
Solutions for Homework 2
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If we do the integral first, we get

lim
n→∞

∫ 1

0

(
1 +

x

n

)n

dx = lim
n→∞

n

n + 1

(
1 +

x

n

)n+1
]1

0

= lim
n→∞

n

n + 1

((
1 +

1

n

)n+1

− 1

)
= 1 · (e− 1) = e− 1.

If we take the limit first, we get

lim
n→∞

∫ 1

0

(
1 +

x

n

)n

dx =

∫ 1

0

ex dx = e− 1.
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First I will show that if I set fn(x) = (f(x))n, then fn(x) → 0 uniformly on [a, b]. Since f
is continuous, |f | is also continuous. Since [a, b] is closed, we know that there exists a point
c ∈ [a, b] such that |f(x)| ≤ |f(c)| for every x in [a, b]. Therefore, if ε > 0 is given, I choose
N ∈ N larger than log ε/ log |f(c)|. Then n ≥ N implies that

|fn(x)− 0| = |f(x)|n ≤ |f(c)|n ≤ |f(c)|N ≤ |f(c)|
log ε

log |f(c)| = ε

for every x ∈ [a, b]. Note that the last two inequalities hold because of the hypotheses that
|f(c)| < 1. This proves that fn(x) converges uniformly to zero on [a, b].

Now I can invoke theorem 5.2.2 to obtain

lim
n→∞

∫ b

a

(f(x))n dx = lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

0 dx = 0,

as desired. �
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Let f : [0, 1] → R be the limit of the sequence {fn}. By Theorem 5.2.1, we know that f is
continuous. Since continuous functions on closed intervals are bounded, there exists a number
M ∈ R such that |f(x)| ≤ M for all x ∈ [0, 1]. Now let ε be a fixed positive number. For the
sake of this argument, we can take ε = 1. Then by the definition of uniform converge, there
exists a number N ∈ N such that

|fn(x)− f(x)| < ε

for all n ≥ N and all x ∈ [0, 1]. Therefore

|fn(x)| = |fn(x)− f(x) + f(x)| ≤ |fn(x)− f(x)|+ |f(x)| < 1 + M

for all n ≥ N and all x ∈ [0, 1]. On the other hand, for each n < N , continuity of fn

implies that there exists a constant Mn ∈ R such that |fn(x)| ≤ Mn for all x ∈ [0, 1]. If
we let K = max{1 + M, M1, M2, . . . ,Mn−1}, then it follows from the above arguments that
|fn(x)| ≤ K for all n ∈ N and all x ∈ [0, 1]. �
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(A) ||f ||1 =
∫ b

a
|f(x)| dx ≥

∫ b

a
0 dx = 0 for all continuous functions f : [a, b] → R. Clearly

||f ||1 = 0 if f(x) = 0 for all x ∈ [a, b]. If on the other hand ||f ||1 = 0, then since |f | is
continuous and non-negative, we can apply problem 3b on page 94 to conclude that f(x) = 0
for every x ∈ [a, b]. In summary, ||f ||1 ≥ 0 with equality if and only if f(x) = 0 for all
x ∈ [a, b].

(B) If α ∈ R is given, then

||αf ||1 =

∫ b

a

|αf(x)| dx = |α|
∫ b

a

|f(x)| dx = |α| · ||f ||1.

(C) If f and g are two continuous functions defined on [a, b], then

||f + g||1 =

∫ b

a

|f(x) + g(x)| dx ≤
∫ b

a

|f(x)|+ |g(x)| dx = ||f ||1 + ||g||1.

�
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(A) Let x ∈ [0, 1] and ε > 0 be given. If x ≤ 1/2, choose any N ∈ N. If n ≥ N , then

|fn(x)− f(x)| = |1− 1| = 0 < ε

If on the other hand x > 1/2, choose N ∈ N larger than (x − 1/2)−1. Then n ≥ N implies
that x > 1/2 + 1/n. In particular,

|fn(x)− f(x)| = |0− 0| = 0 < ε.

For all x ∈ [0, 1], therefore, we see that limn→∞ fn(x) = f(x). In other words fn converges
pointwise to f on [0, 1]. �

(B) Since both fn(x) and f(x) are always between 0 and 1, it’s clear that ||f − fn||∞ ≤ 1.
On the other hand, for any given n, we have for 1/2 < x < 1/2 + 1/n that |fn(x)− f(x)| =
1− n(x− 1/2). Hence

||f − fn||∞ ≥ |f(x)− fn(x)| = 1− n(x− 1/2).

By letting x tend toward 1/2, we obtain that ||f − fn||∞ ≥ 1. Therefore the only possibility
is that ||f − fn||∞ = 1 for each n ∈ N. In particular ||f − fn|| does not converge to zero as
n →∞, so the convergence of fn to f is not uniform. �

(C) Using Theorem 5.2.1 we could have predicted that the limn→∞ ||f − fn||∞ 6= 0, because if
the limit were zero, we would know that fn converges uniformly to f on [0, 1]. The theorem
would then imply that f is a continuous function. But f has a discontinuity at 1/2, so the
convergence can’t be uniform.



(D) This is best accomplished by direct computation.

lim
n→∞

||fn − f ||1 = lim
n→∞

∫ 1

0

|fn(x)− f(x)| dx

= lim
n→∞

∫ 1/2+1/n

1/2

|1− n(x− 1/2)− 0| dx

= lim
n→∞

∫ 1/2+1/n

1/2

1− n(x− 1/2) dx

= lim
n→∞

1

2n
= 0.

�


