Solutions for Homework 2

Page 173/ #2:

If we do the integral first, we get

$$
\lim_{n \to \infty} \int_0^1 \left(1 + \frac{x}{n} \right)^n dx = \lim_{n \to \infty} \frac{n}{n+1} \left(1 + \frac{x}{n} \right)^{n+1} \Big]_0^1
$$

=
$$
\lim_{n \to \infty} \frac{n}{n+1} \left(\left(1 + \frac{1}{n} \right)^{n+1} - 1 \right)
$$

=
$$
1 \cdot (e - 1) = e - 1.
$$

If we take the limit first, we get

$$
\lim_{n \to \infty} \int_0^1 \left(1 + \frac{x}{n}\right)^n dx = \int_0^1 e^x dx = e - 1.
$$

Page $174/ \#5$:

First I will show that if I set $f_n(x) = (f(x))^n$, then $f_n(x) \to 0$ uniformly on [a, b]. Since f is continuous, $|f|$ is also continuous. Since $[a, b]$ is closed, we know that there exists a point $c \in [a, b]$ such that $|f(x)| \leq |f(c)|$ for every x in $[a, b]$. Therefore, if $\epsilon > 0$ is given, I choose $N \in \mathbb{N}$ larger than $\log \epsilon / \log |f(c)|$. Then $n \geq N$ implies that

$$
|f_n(x) - 0| = |f(x)|^n \le |f(c)|^n \le |f(c)|^N \le |f(c)|^{\frac{\log \epsilon}{\log |f(c)|}} = \epsilon
$$

for every $x \in [a, b]$. Note that the last two inequalities hold because of the hypotheses that $|f(c)| < 1$. This proves that $f_n(x)$ converges uniformly to zero on $[a, b]$.

Now I can invoke theorem 5.2.2 to obtain

$$
\lim_{n \to \infty} \int_{a}^{b} (f(x))^{n} dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} 0 dx = 0,
$$
 as desired.

Page 174/ #6:

Let $f : [0,1] \to \mathbf{R}$ be the limit of the sequence $\{f_n\}$. By Theorem 5.2.1, we know that f is continuous. Since continuous functions on closed intervals are bounded, there exists a number $M \in \mathbf{R}$ such that $|f(x)| \leq M$ for all $x \in [0,1]$. Now let ϵ be a fixed positive number. For the sake of this argument, we can take $\epsilon = 1$. Then by the definition of uniform converge, there exists a number $N \in \mathbb{N}$ such that

$$
|f_n(x) - f(x)| < \epsilon
$$

for all $n \geq N$ and all $x \in [0,1]$. Therefore

$$
|f_n(x)| = |f_n(x) - f(x) + f(x)| \le |f_n(x) - f(x)| + |f(x)| < 1 + M
$$

for all $n \geq N$ and all $x \in [0,1]$. On the other hand, for each $n \langle N \rangle$, continuity of f_n implies that there exists a constant $M_n \in \mathbf{R}$ such that $|f_n(x)| \leq M_n$ for all $x \in [0,1]$. If we let $K = \max\{1 + M, M_1, M_2, \ldots, M_{n-1}\}\$, then it follows from the above arguments that $|f_n(x)| \le K$ for all $n \in \mathbb{N}$ and all $x \in [0,1]$.

(A) $||f||_1 = \int_a^b |f(x)| dx \ge \int_a^b 0 dx = 0$ for all continuous functions $f : [a, b] \to \mathbf{R}$. Clearly $||f||_1 = 0$ if $\ddot{f}(x) = 0$ for all $x \in [a, b]$. If on the other hand $||f||_1 = 0$, then since $|f|$ is continuous and non-negative, we can apply problem 3b on page 94 to conclude that $f(x) = 0$ for every $x \in [a, b]$. In summary, $||f||_1 \geq 0$ with equality if and only if $f(x) = 0$ for all $x \in [a, b]$.

(B) If $\alpha \in \mathbf{R}$ is given, then

$$
||\alpha f||_1 = \int_a^b |\alpha f(x)| dx = |\alpha| \int_a^b |f(x)| dx = |\alpha| \cdot ||f||_1.
$$

(C) If f and g are two continuous functions defined on [a, b], then

$$
||f+g||_1 = \int_a^b |f(x) + g(x)| dx \le \int_a^b |f(x)| + |g(x)| dx = ||f||_1 + ||g||_1.
$$

 \Box

Page 181/ #5

(A) Let $x \in [0,1]$ and $\epsilon > 0$ be given. If $x \leq 1/2$, choose any $N \in \mathbb{N}$. If $n \geq N$, then

$$
|f_n(x) - f(x)| = |1 - 1| = 0 < \epsilon
$$

If on the other hand $x > 1/2$, choose $N \in \mathbb{N}$ larger than $(x - 1/2)^{-1}$. Then $n \geq N$ implies that $x > 1/2 + 1/n$. In particular,

$$
|f_n(x) - f(x)| = |0 - 0| = 0 < \epsilon.
$$

For all $x \in [0,1]$, therefore, we see that $\lim_{n\to\infty} f_n(x) = f(x)$. In other words f_n converges pointwise to f on $[0, 1]$.

(B) Since both $f_n(x)$ and $f(x)$ are always between 0 and 1, it's clear that $||f - f_n||_{\infty} \leq 1$. On the other hand, for any given n, we have for $1/2 < x < 1/2 + 1/n$ that $|f_n(x) - f(x)| =$ $1 - n(x - 1/2)$. Hence

$$
||f - f_n||_{\infty} \ge |f(x) - f_n(x)| = 1 - n(x - 1/2).
$$

By letting x tend toward 1/2, we obtain that $||f - f_n||_{\infty} \ge 1$. Therefore the only possibility is that $||f - f_n||_{\infty} = 1$ for each $n \in \mathbb{N}$. In particular $||f - f_n||$ does not converge to zero as $n \to \infty$, so the convergence of f_n to f is not uniform.

(C) Using Theorem 5.2.1 we could have predicted that the $\lim_{n\to\infty}||f-f_n||_{\infty}\neq 0$, because if the limit were zero, we would know that f_n converges uniformly to f on [0, 1]. The theorem would then imply that f is a continuous function. But f has a discontinuity at $1/2$, so the convergence can't be uniform.

(D) This is best accomplished by direct computation.

$$
\lim_{n \to \infty} ||f_n - f||_1 = \lim_{n \to \infty} \int_0^1 |f_n(x) - f(x)| dx
$$

=
$$
\lim_{n \to \infty} \int_{1/2}^{1/2 + 1/n} |1 - n(x - 1/2) - 0| dx
$$

=
$$
\lim_{n \to \infty} \int_{1/2}^{1/2 + 1/n} 1 - n(x - 1/2) dx
$$

=
$$
\lim_{n \to \infty} \frac{1}{2n} = 0.
$$

 \Box