Solutions for Homework 3

Page 202/ #1:

(i) Consider points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Then for the metric ρ_{max} , we have

$$
\rho_{max}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\} \ge 0,
$$

since we are taking the maximum of two non-negative numbers. Moreover, the maximum is zero if and only if both absolute values vanish, in which case $x_1 = x_2$ and $y_1 = y_2$. For the metric ρ_1 , we have

$$
\rho_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| \ge 0
$$

since we are adding non-negative numbers. Moreover, the sum is zero if and only if both absolute values are zero, in which case $x_1 = x_2$ and $y_1 = y_2$ again.

(ii) For the metric ρ_{max} we have

$$
\rho_{max}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}
$$

=
$$
\max\{|x_2 - x_1|, |y_2 - y_1|\}
$$

=
$$
\rho_{max}((x_2, y_2), (x_1, y_1)).
$$

The argument for the metric ρ_1 is similar.

(iii) Let $(x_3, y_3) \in \mathbb{R}^2$ be a third point. Then

$$
\rho_{max}((x_1, y_1), (x_3, y_3)) = \max\{|x_1 - x_3|, |y_1 - y_3|\}
$$

\n
$$
\leq \max\{|x_1 - x_2| + |x_2 - x_3|, |y_1 - y_2| + |y_2 - y_3|\}
$$

\n
$$
\leq \max\{|x_1 - x_2|, |y_1 - y_2|\} + \max\{|x_2 - x_3|, |y_2 - y_3|\}
$$

\n
$$
= \rho_{max}((x_1, y_1), (x_2, y_2)) + \rho_{max}((x_2, y_2), (x_3, y_3))
$$

Page $202/$ #6

The facts that $\rho(x, y) = \rho(y, x)$ and that $\rho(x, y) \geq 0$ are pretty clear. Moreover, we have $\rho(x, y) = 0$ if and only if

$$
\left|\frac{y-x}{xy}\right| = 0
$$

which only happens if $x = y = 0$ (remember that we're assuming $x, y \neq 0$. Finally,

$$
\rho(x, z) = \left| \frac{1}{x} - \frac{1}{y} \right|
$$

= $\left| \frac{1}{x} - \frac{1}{y} + \frac{1}{y} - \frac{1}{z} \right|$
 $\leq \left| \frac{1}{x} - \frac{1}{y} \right| + \left| \frac{1}{y} - \frac{1}{z} \right|$
= $\rho(x, y) + \rho(y, z),$

for all $x, y, z \in (0, \infty)$, so the triangle inequality holds, too.

Page 208/ #4:

The sets in (b) and (c) are complete, but the one in (a) is not. For instance, the sequence $\{(1-1/n,0)\}_{n=1}^{\infty}$ converges to the point $(1,0) \in \mathbb{R}^2$. Therefore it is Cauchy. But $(1,0)$ does not belong to the original set, so the set is not complete.

Other Problem A.

Many answers to this question are possible. Here's mine. Let $f_n : [0,1] \to \mathbf{R}$ be given by $f_n(x) = x^n$. Then $f_n(x)$ converges pointwise to the function $f : [0,1] \to \mathbf{R}$ satisfying $f(1) = 1$ and $f(x) = 0$ for $x \in [0, 1)$. If f_n converged uniformly, then it would converge pointwise to the same limiting function, and since f_n is continuous for every n, the limiting function would be continuous. But the pointwise limit f is not continuous, so we conclude that f_n does not converge uniformly. On the other hand, if $\rho(f,g) = \int_0^1 |f(x) - g(x)| dx$, then

$$
\rho(f_n, f) = \int_0^1 |x^n - 0| = \frac{1}{n+1}
$$

for every n (note that the fact that $f(1) = 1$ won't affect the integral). So $\lim_{n\to\infty} \rho(f_n, f) = 0$. Therefore f_n converges to f with respect to the metric ρ .

Other Problem B.

(i) Suppose that $\{a_n\}_{n=1}^{\infty}$ converges uniformly to an element $a \in \mathcal{M}$ with respect to the metric ρ_1 . Then given $\epsilon > 0$, I set $\epsilon' = \epsilon/c_2$ and choose $N \in \mathbb{N}$ large enough that $n \geq N$ implies that

$$
\rho_1(a_n, a) < \epsilon'.
$$

Then for $n \geq N$, we also have

$$
\rho_2(a_n, a) \le c_2 \rho_1(a_n, a) < c_2 \epsilon' = \epsilon.
$$

Hence, $a_n \to a$ with respect to the metric ρ_2 . Repeating the argument with ρ_1 and ρ_2 switched and with c_2 replaced by $1/c_1$ takes care of the other direction.

(ii) Let $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$ be points. Let j between 1 and n be chosen so that $|x_j - y_j|$ is as large as possible. Then we have

$$
\rho_{max}(\mathbf{x}, \mathbf{y})^2 = |x_j - y_j|^2
$$

\n
$$
\leq \sum_{k=1}^n |x_k - y_k|^2 = \rho_2(\mathbf{x}, \mathbf{y})^2.
$$

\n
$$
\leq \sum_{k,\ell=1}^n |x_k - y_k| |x_{\ell} - y_{\ell}|
$$

\n
$$
= \left(\sum_{k=1}^n |x_k - y_k|\right)^2 = \rho_1(\mathbf{x}, \mathbf{y})^2
$$

\n
$$
\leq (n|x_j - y_j|)^2 = n^2 \rho_{max}(\mathbf{x}, \mathbf{y})^2
$$

Taking square roots (all distances are non-negative so absolute value signs are unnecessary) and summarizing gives:

.

$$
\rho_{max}(\mathbf{x}, \mathbf{y}) \leq \rho_2(\mathbf{x}, \mathbf{y}) \leq \rho_1(\mathbf{x}, \mathbf{y}) \leq n \rho_{max}(\mathbf{x}, \mathbf{y}).
$$

So ρ_1 and ρ_2 are each comparable to ρ_{max} (and hence comparable to each other as well). Therefore by part (i) a sequence converges with respect to one of these three metrics if and only if it converges with respect to the other two. \Box

(iii) By part (ii) of this problem, we know that the Euclidean metric ρ_2 is comparable to the box metric ρ_{max} . So if $\mathbf{x}_j \to \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$, we then have for each $1 \leq k \leq n$ and all $j \in \mathbf{N}$ that

$$
0 \leq |x_{j,k} - y_k| \leq \rho_{max}(\mathbf{x}_j, \mathbf{y}) \leq c_1 \rho_2(\mathbf{x}_j, \mathbf{y}),
$$

for some $c_1 > 0$. Since the right side tends to zero as $j \to \infty$, the Squeeze Theorem tells us that $\lim_{i\to\infty} |x_{i,k} - y_k| = 0$ —in other words, for each k between 1 and n, we have $\lim_{i\to\infty} x_{i,k} = y_k$.

Now suppose that $\mathbf{x}_n \to \mathbf{y}$ coordinate-wise. Then we can use comparability of the metrics ρ_1 and ρ_2 to obtain

$$
0 \leq \rho_2(\mathbf{x}_j, \mathbf{y}) \leq c_2 \rho_1(\mathbf{x}_j, \mathbf{y}) = c_2(|x_{j,1} - y_1| + \cdots + |x_{j,n} - y_n|).
$$

By assumption, all *n* terms on the right side go to zero as $j \to \infty$, so the Squeeze Theorem allows us to conclude that $\rho_2(x_j, y)$ goes to zero as well. In other words, $x_j \to y$ in the Euclidean metric.