
Solutions for Homework 4

Page 281/ #2:

K = ||∂f/∂y||∞ = || cos y||∞ = 1. Also, M = ||f ||∞ = 1. The proof shows that we obtain a
solution on [t0 − δ, t0 + δ] so long as both Kδ and Mδ are less than 1. In particular, we will
be OK if we take δ = 1/2.

Page 282/ #10:

We just need to find those points (0, y0) at which the functions f and ∂f/∂y are continuous.
So the answers are

a: y0 can be anything;
b: y0 > 2;
c: y0 6= 0;
d: |y0| < 1;
e: y 6= 0.

Other Problem A:

Part 1. Given x, y ∈ R, the Mean Value Theorem guarantees a point c between x and y such
that

T (x)− T (y)

x− y
= T ′(c) =

c√
1 + c2

.

Hence

|T (x)− T (y)| = |c|√
c2 + 1

|x− y| < |x− y|.

�

Part 2. A fixed point x for T satisfies the equation
√

x2 + 1 = x. Squaring both sides and
subtracting x2 gives. 1 = 0, which is impossible. Therefore, T has no fixed points. �

Part 3. Note that T (x) =
√

1 + x2 >
√

x2 = |x| ≥ x for all x ∈ R. Hence, given x1 ∈ R,
the sequence x1, x2 = T (x1), x3 = T (x2), . . . is increasing. Either it diverges to infinity as
n increases or it converges to its least upper bound. Suppose (by way of contradiction)
that M = limn→∞ xn = sup{xn}∞n=0 < ∞ is the least upper bound. Then since T is a
continuous function, we have limn→∞ T (xn) = T (limn→∞ xn) = T (M). On the other hand,
T (xn) = xn+1 ≤ M for every n since M is an upper bound for the xn’s. Therefore, T (M) =
limn→∞ T (xn) ≤ M . But we already know that T (M) > M for any number M , so M must
not exist. We conclude that the sequence {xn} diverges to infinity. �



Other Problem B:

Part 1. If y1, y2 : [a, b] → R are continuous functions, then for each t ∈ [a, b], we have

|Ty1(t)− Ty2(t)| =

∣∣∣∣∫ t

a

p(s)(y1(s)− y2(s) ds

∣∣∣∣
≤

∫ t

a

|p(s)||y1(s)− y2(s)| ds

≤ ||y1(s)− y2(s)||∞
∫ t

a

|p(s)| ds

≤ ||y1(s)− y2(s)||∞
∫ b

a

|p(s)| ds.

That is,

||Ty1 − Ty2||∞ ≤
(∫ b

a

|p(s)| ds

)
||y1 − y2||∞,

and T is a contraction provided that the integral on the right side is less than one. �

Part 2. We can choose b > a to be any number such that

1 >

∫ b

a

|p(s)| ds =

∫ b

0

s ds = b2/2.

So we can take b to be any number smaller than
√

2. If y1(t) = 1, then

y2(t) =

∫ t

0

(s · 1 + es) ds + 1 =
t2

2
+ et

y3(t) =

∫ t

0

((
s2

2
+ es

)
· 1 + es

)
ds + 1 =

t4

6
+ tet + 1.

Other Problem C:

Part 1. Note that y2(t) − y1(t) is a continuous function, so if y2 − y1 is positive at t2, then
y2 − y1 is positive for t slightly larger than t2. In particular, there exist values of t between
t2 and t1 for which y2 − y1 is positive, and therefore t2 is not the least upper bound for the
set of such values.

If, on the other hand, y2 − y1 is negative at t2, then y2 − y1 is negative for all values of t
slightly less than t2. In particular, t2 is not the least upper bound for the set of t < t1 for
which y2(t)− y1(t) ≥ 0. The only remaining possibility is that y2(t)− y1(t) = 0. �

Part 2. Since y1(t2) = y2(t2), we have

y′1(t2)− y′2(t2) = f1(t2, y1(t2))− f2(t2, y2(t2)) = f1(t2, y1(t2))− f2(t2, y1(t2)) < 0

by hypothesis on f1 and f2.

Part 3. Let h(t) = y1(t) − y2(t). Since h is C1 and h′(t2) < 0, we know that h′(t) < 0 for t
near t2. Therefore, h is decreasing for t near t2. In particular, for t slightly greater than t2,
we have 0 < h(t) = y1(t)− y2(t) < y1(t2)− y2(t2). That is, y1(t) < y2(t). �

Part 4. The fact that y1(t) < y2(t) for t slightly larger than t2 contradicts the assumption
that t2 is an upper bound for the set of such t. This means that t2 does not exist. This in
turn means that there is no t1 for which y1(t1) > y2(t1). We conclude that y1(t) ≤ y2(t) for
all t > t0. �

Part 5. A similar argument shows that y1(t) ≥ y2(t) for all t < t0.



Part 6. Suppose that there is actually a point t1 > t0 for which y1(t1) = y2(t1). Then,
as in part 2, we conclude that y′1(t1) − y′2(t1) < 0. And as in part 3, we conclude that
h(t) = y1(t)− y2(t) is decreasing for t near t1. But this means that y1(t) > y2(t) for t slightly
less than t1. Such t would be greater than t0, and our earlier arguments have already shown
that y1(t) ≤ y2(t) for all t ≥ t0. �


