
Solutions for Homework 6
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(a) Converges—use the ratio test.

(c) Diverges—terms go to infinity.

(e) Diverges by the comparison test—note that√
j + 1−

√
j =

1√
j + 1 +

√
j
≥ 1

2
√

j + 1
≥ 1

3
√

j
≥ 1

3j

for all j ≥ 1. We know from the textbook that
∑

1
j

diverges.

(g) Converges by the root test. Notice

lim
n→∞

|e−j+sin j|1/j = lim
j→∞

e−1+ sin j
j = e−1 < 1.
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If we try to apply the ratio test, then we find that |an+1/an| = 2 if n is odd and 1/2 if n is
even. Thus the limsup of this ratio is 2 (i.e. the limit point obtained by taking the limit of
the ratio for odd n), and the ratio test tells us nothing. On the other hand, if we apply the
root test, we find

lim sup
j→∞

|aj|1/j = lim sup
1

2
|2(−1)j |1/j.

But 2(−1)j
is always between 1/2 and 2. Hence

j

√
1

2
≤ (2(−1)j

)1/j ≤ j
√

2

for all j, and the Sqeeze Theorem allows us to conclude that

1 = lim
j→∞

(2(−1)j

)1/j = lim sup
j→∞

(2(−1)j

)1/j.

Plugging this back into the first equation gives

lim sup
j→∞

|aj|1/j =
1

2
,

which is less than one. Therefore the series converges.
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By hypothesis, there exists a number M such that |bj| ≤ M for all j. Therefore |ajbj| ≤
M |aj| for all j. Also, since

∑∞
j=1 |aj| converges, so does

∑∞
j=1 M |aj| (Theorem 6.2.1, part

(d)). The comparison test therefore implies that
∑∞

j=1 |bjaj| converges. Theorem 6.2.1 part

(c) implies in turn that
∑∞

j=1 bjaj converges. �
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For part (a), consider aj = 1/n2. For part (b), let Sn be the nth partial sum of
∑∞

j=1

√
aj

j
.

Since the terms of this series are positive, we see that {Sn} is an increasing sequence. There-
fore in order to show that the series converges, we need only show that Sn is bounded above.



The Cauchy-Schwartz inequality (page 218, #10) gives us that

Sn =
n∑

j=1

√
aj

j
≤

(
n∑

j=1

1

j2

)1/2( n∑
j=1

aj

)1/2

= (Rn · Tn)1/2,

where Rn is the nth partial sum for the series
∑∞

j=1
1
j2 and Tn is the nth partial sum for∑∞

j=1 aj. These last two series converge, which means by definition that their sequences of
partial sums converge. Since convergent sequences are bounded, there exist upper bounds R
and T for {Rn} and {Tn}, respectively. We conclude that

Sn ≤ (RT )1/2

for all n and that {Sn} is therefore bounded above. This completes the proof. �

Other Problem A.

Part 1. If k ≤ 0, then 1
n(log n)k ≥ 1

n
for all n. Since

∑∞
n=1

1
n

diverges, the comparison test

implies that
∑∞

n=1
1

n(log n)k diverges, too.

Part 2. Note that

Sn =

∫ n+1

1

f(x) dx

where f : [3,∞) → R is the piecewise constant function equal to 1
n(log n)k for all x ∈ [n, n+1).

Note further that
1

x(log x)k
≤ f(x) ≤ 1

(x− 1)(log(x− 1))k

for all x ∈ [3,∞). If k = 1, then integrating this inequality from three to n + 1 gives us the
upper and lower bounds.

log(log(n + 1))− log(log 3) ≤ Sn ≤ log(log n)− log(log 2)

for all n. If k > 1, the bounds become

1

(k − 1)(log 3)k−1
− 1

(k − 1)(log(n + 1))k−1
≤ Sn ≤

1

(k − 1)(log 2)k−1
− 1

(k − 1)(log n)k−1
.

Part 3. In all cases, the terms of the series are increasing, so the sequence of partial sums
is increasing. Therefore, the series converges if and only if the sequence of partial sums is
bounded. When k = 1 our lower bound for Sn goes to infinity as n increases, so Sn must
diverge to infinity as well—i.e. the series diverges when k = 1. When k > 1, we apply our
upper bound to see that

Sn ≤
1

(k − 1)(log 2)k−1

for all n ≥ 3. Therefore, the series converges.

Part 4. We again use the fact that f(x) ≤ 1
(n−1)(log(n−1))2

for all x ∈ [3,∞). Choosing integers

m ≥ n ≥ 3 and integrating from n to m + 1 gives us the bound

|Sm − Sn| = Sm − Sn ≤
1

log n
− 1

log m

Letting m go to infinity then gives

|S − Sn| = S − Sn ≤
1

log n

for all n ≥ 3.



Part 5. Using the upper bound from part 4, we see that we would need to choose n large
enough that

1

log n
≤ .01.

That is, we would have to add up around n ≥ e100 ≈ 2.7× 1043 terms of the sequence.

Part 6. Note that we can repeat Part 4 using the estimate f(x) ≥ 1
x(log x)2

for all x ∈ [3,∞)

and obtain (after some computation) that

S − Sn ≥
1

(log(n + 1))2

for all n ≥ 3. Combining this with the bound in Part 4 and rearranging a bit gives

Sn +
1

(log(n + 1))2
≤ S ≤ Sn +

1

log n
.

Call the upper bound Un and the lower bound Ln. By the Mean Value Theorem, there exists
a number c ∈ (n, n + 1) such that

Un − Ln =
1

log n
− 1

(log(n + 1))2
=

1

c(log c)2
≤ 1

n(log n)2
.

In particular, we find by plugging in different n on the right side that Un − Ln < .01 when
n ≥ 15. Since S is between U15 and L15, we can use either quantity to approximate S to
within .01. We compute that U15 = 1.07352. (Incidentally, Mathematica gives a value of
1.06906 for S, so if Mathematica can be trusted, our approximation really is within .01 of
being correct.)


