Solutions for Homework 7

Page 243/ #8:

Given n € N, set
sinx if =0 mod 4
cosr if j=1 mod4
gn() = —sinx if j=2 mod4
—cosx if j=3 mod4
Note that ¢/, (z) = gnr1(x) for every n and that |g,(x)| < 1 for every n and x.
If 1 < N < p, then I claim that for every n < N — 1, the series

>_(2m)) ajg,(2mjz).
j=1
converges uniformly on R and is equal to £ (z). In particular, f is N —1 times differentiable.
I will prove this claim by induction on n:
When n = 0 this amounts merely to showing that

Z a;jsin(2mjx) (1)

converges uniformly. The sum is equal to f(x) = f()(z) by definition. By hypothesis, we
have
la;sin(2rja)] < |aj] < €/
for all x € R. Furthermore, p is at least two, so Z;; ]% converges. Hence the Weierstrass M-
test implies that the series in equation 7?7 converges uniformly for all x € R. This concludes
the case n = 0.
Now suppose that the claim is true for n = k and consider the case n = k 4+ 1. Then the

series
o

> @mj)tagn(2mjx)

j=1
converges uniformly on R and is equal to f®* (x). Differentiating this series term by term
gives us the new series

o o

> @ri) ajgra (2mz) =) (2m)) ajgn (27 jx). (2)

j=1 j=1
We have the following upper bounds for the terms of this new series:
(2m)"C

I

|(2m5)" ajgn (2mj)| < (2m7)"|a;| <

Now sincen < N —1 < p—1, we have that p—n > 1 and that Zj‘;l 1/4P~™ converges. Hence
the Weierstrass M-test tells us that the series (??) converges uniformly for all z € R. By

Theorem 6.3.3 then, we conclude that this series is equal to %Z;j = ZZ—{. That is, the claim

is true in the case n = k + 1 and our proof is complete. 0]
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Note that e=(*=9%/j2 < ¢0/42 = 1/42 for all z € R. Since > 521 1/4% converges, the
Weierstrass M-test tells us that

—(z—3)?

:Ze ;2

J=1

(3)

converges uniformly on R to a continuous function f(z).

It remains to show that lim, 4+~ f(z) = 0. We will do this for  — oo only, since the case
xr — —oo is similar. Let S, (z) denote the nth partial sum for the series in (??). Let € > 0
be any fixed number. Since S,,(x) converges uniformly to f(z) (by definition of convergence
for a series), there exists an N € N such that

° ef(xf.j)2
> Paa [f(z) = Su(z)| <€
j=n+1

whenever n > N. In particular, this inequality holds if we choose n = N.
Note also that, since Sy(x) is a finite sum, we have

—(z—j)? . e (@—4)?
e e
0 < lim f(z) = lim g )+ lim E
T z—oo Z—00 200 P2
j=n+1 J
N
- —(z—3)?
e e
= E lim + lim E

< O0+c¢

The only way that this inequality holds for every e > 0 is if we have lim, ., f(z) = 0. O
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If f(x) = Inx, then for n > 1, f™(z) = %;(n—l)' Hence the power series for In(z)
centered at g =1 is

x—l)j.

Oof(j)l ad
S PRy -3

Jj=0 J=1

It’s not hard to show that lim,_.(1/5)'/7 = 1, so the radius of convergence for this series is
1. Now if S, (z) is the nth partial sum for the series, then Taylor’s theorem tells us that for
some ¢ between x and 1, we have

A w1 _ (D" — D"
f(z) = Su(z) = m(z — 1)t = (n+ et
Now if |z — 1| < 1/2, we have that —1/2 < ¢ < 3/2, so

(1/2)n+1 1

|f(z) = Sul@)] < (n+ 1)(1/2)m+ T+l

In other words, for every n € N,
1 1
< <
n+1_f() ()_n+1

By the Squeeze Theorem, we conclude that lim, . | f(z) — S,(x)| = 0. O
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oo (—=1)Iz%
j=0 " j!
on any finite interval. Hence we can integrate the latter series term by term (see Theorem
6.3.2) to obtain

any finite interval, we have e = 3°

where the series (again) converges uniformly

e (—1)g%+!

F(x):/e_xQda::Zm.

§=0
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The radius of convergence is

R = (limsup(j + 1)Y9(5 + 2)Y9)"1 = 1.

If we call the series f(z), then the antiderivative of the antiderivative of f can be obtained
by integrating the series twice term by term (Theorem 6.3.2 again, along with the fact that
the series converges uniformly on (—r,r) for any » < R = 1.) Hence the antiderivative of the
antiderivative of f is given by the geometric series

F(:c):E xﬁQ:xQE szl :
—x
J=0 Jj=0

Now we differentiate twice to get back to f, arriving at the formula

f(2) = F'(2) = —

1—2x
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. . J . . .
Consider the series > °°  Z. This series has radius of convergence equal to one for every p

J=1 7"
and therefore converges when |z| < 1 and diverges when |z| > 1. However, whether the series
converges or diverges at the points x = 1 and x = —1 depends on p. At x = 1, we have

— jp = ]p

and at x = —1, we have

=1 8 = 3

If p = 0, then both of these series diverge, because the terms don’t go to zero in either of them.
If p = 1, then the first series is the harmonic series and therefore diverges, whereas the second
series is the alternating harmonic series (example from class) and therefore converges. If p = 2,
then the first series converges, and this means that the second series converges absolutely.
Taken together, these examples show that a power series can converge at both endpoints of its
interval of convergence, diverge at both endpoints, or converge at one endpoint, but diverge
at the other.



