Solutions for Homework 8

Problem 1: Compute the operator norm of the matrix

$$
\left(\begin{array}{cc}3 & 5\\5 & 3\end{array}\right).
$$

(Hint: a vector in \mathbb{R}^2 can be written in polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$).

Solution: Consider a vector $(x, y) = (r \cos \theta, r \sin \theta)$ in ². Note that $||(x, y)|| = r$. Define a new vector (x', y') by

$$
\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3r\cos\theta + 5r\sin\theta \\ 5r\cos\theta + 3r\sin\theta \end{pmatrix}
$$

The operator norm of the matrix is the maximum value of the quantity

$$
\frac{|| (x', y') ||}{|| (x, y) ||} = \sqrt{34 + 60 \cos \theta \sin \theta} = \sqrt{34 + 30 \sin 2\theta}
$$

The expression under the square root is largest when $\sin 2\theta = 1$ so the operator norm of the The expression under
matrix is $\sqrt{64} = 8$.

Problem 2: Show using the definition of limit that the function $L : \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$
L(x,y) = \begin{pmatrix} 1 & -2 \\ e & 1 \\ 1 & \pi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}
$$

is continuous.

Solution: Let A denote the 3×2 matrix in the definition of L. From class we know that the operator norm of A is no greater than $Cmn = 6\pi$ where C is the maximum of the absolute values of the entries of A and m and n are the number of rows and columns, respectively, of A.

Let $\mathbf{a} \in \mathbb{R}^n$ and $\epsilon > 0$ be given and choose $\delta = \epsilon/6\pi$. Then if $||\mathbf{x} - \mathbf{a}|| < \delta$, we have

$$
||L(\mathbf{x}) - L(\mathbf{a})|| = ||A \cdot (\mathbf{x} - \mathbf{a})|| \le 6\pi ||\mathbf{x} - \mathbf{a}|| < 6\pi\delta = \epsilon.
$$

 \Box

Therefore L is continuous at **a**. Since **a** was arbitrary, L is continuous on all of \mathbb{R}^n .

Problem 3: Show that the intersection of finitely many open sets is open. Give an example of a countable collection of open sets $U_j \subset \mathbf{R}^2$, $j \in \mathbf{N}$ whose intersection $\bigcap_{j=1}^{\infty} U_j$ is not open.

Solution: Suppose that $U_1, \ldots, U_k \subset \mathbb{R}^n$ are open sets and let $U = U_1 \cap \cdots \cap U_k$ be their intersection. Then if $\mathbf{a} \in U$, we must show that \mathbf{a} is an interior point of U. To do this, we point out that $\mathbf{a} \in U$ implies that $\mathbf{a} \in U_j$ for $j = 1, \ldots, k$. But each U_j is open, so there exists a number $r_j > 0$ such that $B_{r_j}(\mathbf{a}) \subset U_j$. It follows that the number $r = \min\{r_1, \ldots, r_k\}$ is positive and that $B_r(\mathbf{a}) \subset U_j$ for every $j = 1, \ldots, k$. Therefore $B_r(\mathbf{a}) \subset U$, too. We conclude that **a** is an interior point of U and that U is open.

Problem 4: Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function and let $U \subset \mathbb{R}^m$ be an open set. Show that the set

$$
f^{-1}(U)\{\mathbf{x}\in\mathbf{R}^n:f(\mathbf{x})\in U\}
$$

is open.

Solution: Let $U \subset \mathbb{R}^n$ be open and $W = f^{-1}(U)$. We must show that any point $\mathbf{a} \in W$ is an interior point. To do this, we note that by definition of $W, f(\mathbf{a}) \in U$. Since U is open, we know that there exists an $\epsilon > 0$ such that $B_{\epsilon}(f(\mathbf{a})) \subset U$. Since f is continuous, we know that there exists $\delta > 0$ such that $||\mathbf{x} - \mathbf{a}|| < \delta$ implies that $||f(\mathbf{x}) - f(\mathbf{a})|| < \epsilon$. In other words $x \in B_\delta(\mathbf{a})$ implies that $f(\mathbf{x}) \in B_\epsilon(f(\mathbf{a}))$ –in particular, that $f(\mathbf{x}) \in U$. Therefore $B_{\delta}(\mathbf{a}) \subset f^{-1}(U) = W$. This shows that **a** is an interior point of W and, since **a** was chosen arbitrarily, that W is open.

Problem 5: Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ be functions and $\mathbf{a} \in^n$, be a point at which both $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$ and $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x})$ exist. Show that $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) + g(\mathbf{x})$ exists and is equal to $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) + g(\mathbf{x})$ $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}).$

Solution: Let $a \in \mathbb{R}^n$ and $\epsilon > 0$ be given. If we set $\epsilon' = \epsilon/2 > 0$, then (since f and g are continuous) there exist numbers $\delta_1, \delta_2 > 0$ such that $||\mathbf{x} - \mathbf{a}|| < \delta_1$ implies $||f(\mathbf{x}) - f(\mathbf{a})|| < \epsilon'$ and $||\mathbf{x} - \mathbf{a}|| < \delta_2$ implies $||g(\mathbf{x}) - g(\mathbf{a})|| < \epsilon'$. So if we set $\delta = \min{\delta_1, \delta_2} > 0$, we see that $||\mathbf{x} - \mathbf{a}|| < \delta$ implies that

$$
||(f+g)(\mathbf{x})+(f+g)(\mathbf{a})|| \le ||f(\mathbf{x})-f(\mathbf{a})|| + ||g(\mathbf{x})-g(\mathbf{a})|| \le \epsilon' + \epsilon' = \epsilon.
$$

Therefore $f + q$ is continuous at **a**.

Problem 6: $\#$ 2 on page 244 of Wade's book—no proofs necessary.

a: $\lim_{x\to 0} \lim_{y\to 0} f(x, y) = \lim_{y\to 0} \lim_{x\to 0} f(x, y) = 0$. However, $\lim_{(x,y)\to (0,0)} f(x, y)$ does not exist, because if $(x_n, y_n) = (1/n, 1/n)$ then

$$
\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} \frac{1}{2} n^2 (\sin(1/n))^2 = \frac{1}{2},
$$

which is different than either of the iterated limits.

- **b:** $\lim_{x\to 0} \lim_{y\to 0} f(x, y) = 1$ and $\lim_{y\to 0} \lim_{x\to 0} f(x, y) = 0 = 1/2$. Again, $\lim_{(x,y)\to (0,0)} f(x, y)$ does not exist.
- c: $\lim_{x\to 0} \lim_{y\to 0} f(x, y) = \lim_{y\to 0} \lim_{x\to 0} f(x, y) = 0$. Moreover, $\lim_{(x,y)\to (0,0)} f(x, y) = 0$ because

$$
|f(x,y)| = \left| \frac{x-y}{(x^2 + y^2)^{\alpha}} \right|
$$

\n
$$
\leq \frac{|x|}{(x^2 + y^2)^{\alpha}} + \frac{|y|}{(x^2 + y^2)^{\alpha}}
$$

\n
$$
\leq \frac{|x|}{|x|^{2\alpha}} + \frac{|y|}{|y|^{2\alpha}} = |x|^{1-2\alpha} + |y|^{1-2\alpha},
$$

and since $\alpha < 1/2$, the last expression tends to zero as $(x, y) \rightarrow (0, 0)$.

$$
\Box
$$