
Solutions for Homework 8

Problem 1: Compute the operator norm of the matrix(
3 5
5 3

)
.

(Hint: a vector in R2 can be written in polar coordinates (x, y) = (r cos θ, r sin θ)).

Solution: Consider a vector (x, y) = (r cos θ, r sin θ) in 2. Note that ||(x, y)|| = r. Define a
new vector (x′, y′) by(

x′

y′

)
=

(
3 5
5 3

) (
x
y

)
=

(
3r cos θ + 5r sin θ
5r cos θ + 3r sin θ

)
The operator norm of the matrix is the maximum value of the quantity

||(x′, y′)||
||(x, y)||

=
√

34 + 60 cos θ sin θ =
√

34 + 30 sin 2θ

The expression under the square root is largest when sin 2θ = 1 so the operator norm of the
matrix is

√
64 = 8.

Problem 2: Show using the definition of limit that the function L : R2 → R3 given by

L(x, y) =

 1 −2
e 1
1 π

 (
x
y

)
+

 2
5
1


is continuous.

Solution: Let A denote the 3× 2 matrix in the definition of L. From class we know that the
operator norm of A is no greater than Cmn = 6π where C is the maximum of the absolute
values of the entries of A and m and n are the number of rows and columns, respectively, of
A.

Let a ∈ Rn and ε > 0 be given and choose δ = ε/6π. Then if ||x− a|| < δ, we have

||L(x)− L(a)|| = ||A · (x− a)|| ≤ 6π||x− a|| < 6πδ = ε.

Therefore L is continuous at a. Since a was arbitrary, L is continuous on all of Rn. �

Problem 3: Show that the intersection of finitely many open sets is open. Give an example
of a countable collection of open sets Uj ⊂ R2, j ∈ N whose intersection

⋂∞
j=1 Uj is not open.

Solution: Suppose that U1, . . . , Uk ⊂ Rn are open sets and let U = U1 ∩ · · · ∩ Uk be their
intersection. Then if a ∈ U , we must show that a is an interior point of U . To do this, we
point out that a ∈ U implies that a ∈ Uj for j = 1, . . . , k. But each Uj is open, so there exists
a number rj > 0 such that Brj

(a) ⊂ Uj. It follows that the number r = min{r1, . . . , rk} is
positive and that Br(a) ⊂ Uj for every j = 1, . . . , k. Therefore Br(a) ⊂ U , too. We conclude
that a is an interior point of U and that U is open. �

Problem 4: Let f : Rn → Rm be a continuous function and let U ⊂ Rm be an open set.
Show that the set

f−1(U){x ∈ Rn : f(x) ∈ U}
is open.

1



Solution: Let U ⊂n be open and W = f−1(U). We must show that any point a ∈ W is
an interior point. To do this, we note that by definition of W , f(a) ∈ U . Since U is open,
we know that there exists an ε > 0 such that Bε(f(a)) ⊂ U . Since f is continuous, we
know that there exists δ > 0 such that ||x − a|| < δ implies that ||f(x) − f(a)|| < ε. In
other words x ∈ Bδ(a) implies that f(x) ∈ Bε(f(a))–in particular, that f(x) ∈ U . Therefore
Bδ(a) ⊂ f−1(U) = W . This shows that a is an interior point of W and, since a was chosen
arbitrarily, that W is open. �

Problem 5: Let f, g : Rn → Rm be functions and a ∈n, be a point at which both limx→a f(x)
and limx→a g(x) exist. Show that limx→a f(x) + g(x) exists and is equal to limx→a f(x) +
limx→a g(x).

Solution: Let a ∈n and ε > 0 be given. If we set ε′ = ε/2 > 0, then (since f and g are
continuous) there exist numbers δ1, δ2 > 0 such that ||x−a|| < δ1 implies ||f(x)− f(a)|| < ε′

and ||x − a|| < δ2 implies ||g(x) − g(a)|| < ε′. So if we set δ = min{δ1, δ2} > 0, we see that
||x− a|| < δ implies that

||(f + g)(x) + (f + g)(a)|| ≤ ||f(x)− f(a)||+ ||g(x)− g(a)|| ≤ ε′ + ε′ = ε.

Therefore f + g is continuous at a. �

Problem 6: # 2 on page 244 of Wade’s book—no proofs necessary.

a: limx→0 limy→0 f(x, y) = limy→0 limx→0 f(x, y) = 0. However, lim(x,y)→(0,0) f(x, y) does
not exist, because if (xn, yn) = (1/n, 1/n) then

lim
n→∞

f(xn, yn) = lim
n→∞

1

2
n2(sin(1/n))2 =

1

2
,

which is different than either of the iterated limits.
b: limx→0 limy→0 f(x, y) = 1 and limy→0 limx→0 f(x, y) = 0 = 1/2. Again, lim(x,y)→(0,0) f(x, y)

does not exist.
c: limx→0 limy→0 f(x, y) = limy→0 limx→0 f(x, y) = 0. Moreover, lim(x,y)→(0,0) f(x, y) = 0

because

|f(x, y)| =

∣∣∣∣ x− y

(x2 + y2)α

∣∣∣∣
≤ |x|

(x2 + y2)α
+

|y|
(x2 + y2)α

≤ |x|
|x|2α

+
|y|
|y|2α

= |x|1−2α + |y|1−2α,

and since α < 1/2, the last expression tends to zero as (x, y) → (0, 0).


