From Wade's book:

- Pages 250-252: 2, 3, 6, 8
- Pages 259-260: 2 (∂E —the 'boundary of E' is $\overline{E} \overset{\circ}{E}$), 5, 7

Page 251/ #2: Solution

Let $\mathbf{a} = (x, y)$ and $\mathbf{h} = (h_1, h_2)$ be points in \mathbf{R}^2 . Let

$$T(\mathbf{h}) = \begin{pmatrix} y & x \\ 1 & 1 \\ 2x & -2y \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}.$$

Then

$$f(\mathbf{a}+h) - f(\mathbf{a}) - T(\mathbf{h}) = (h_1h_2, 0, h_1^2 - h_2^2).$$

Therefore,

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{||f(\mathbf{a}+h) - f(\mathbf{a}) - T(\mathbf{h})||}{||\mathbf{h}||} \leq \lim_{\mathbf{h}\to\mathbf{0}} \frac{|h_1h_2|}{||\mathbf{h}||} + \frac{|h_1^2|}{||\mathbf{h}||} + \frac{|h_2^2|}{||\mathbf{h}||} \leq \lim_{\mathbf{h}\to\mathbf{0}} \frac{|h_1h_2|}{|h_1|} + \frac{|h_1^2|}{|h_1|} + \frac{|h_2^2|}{|h_2|} = 0.$$

Therefore f is differentiable at \mathbf{a} , and $Df_{\mathbf{a}}(\mathbf{h}) = T(\mathbf{h})$.

Page 251/ #6a: Solution

Suppose that f and g are differentiable at **a**. Then

$$0 \leq \lim_{\mathbf{h}\to 0} \frac{||(f+g)(\mathbf{a}+h) - (f+g)(\mathbf{a}) - Df_{\mathbf{a}}(\mathbf{h}) - Dg_{\mathbf{a}}(\mathbf{h})||}{||\mathbf{h}||}$$

$$\leq \lim_{\mathbf{h}\to 0} \frac{||f(\mathbf{a}+h) - f(\mathbf{a}) - Df_{\mathbf{a}}(\mathbf{h})||}{||\mathbf{h}||} + \frac{||g(\mathbf{a}+h) - g(\mathbf{a}) - Dg_{\mathbf{a}}(\mathbf{h})||}{||\mathbf{h}||} = 0.$$

That is, f + g is differentiable at **a**, and $D(f + g)_{\mathbf{a}} = Df_{\mathbf{a}} + Dg_{\mathbf{a}}$.

Page 251/ #8: Solution

Since T is linear,

$$T(\mathbf{a} + \mathbf{h}) - T(\mathbf{a}) - T(\mathbf{h}) = T(\mathbf{a} + \mathbf{h} - \mathbf{a} - \mathbf{h}) = T(\mathbf{0}) = \mathbf{0}$$

for every $\mathbf{a}, \mathbf{h} \in^{n}$. Hence,

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{||T(\mathbf{a}+\mathbf{h})-T(\mathbf{a})-T(\mathbf{h})||}{||\mathbf{h}||}=0.$$

Therefore, T is differentiable at \mathbf{a} , and $DT_{\mathbf{a}}(\mathbf{h}) = T(\mathbf{h})$ for every $\mathbf{a} \in \mathbb{R}^n$.

Page 260/ #2: Solution

a:
$$\overline{E} = E$$
, $\overset{\circ}{E} = \{(x, y) \in^2 : x^2 + 4y^2 < 1\}$, and $\partial E = \{(x, y) \in^2 : x^2 + 4y^2 = 1\}$
b: $\overline{E} = E = \partial E$, $\overset{\circ}{E} = \emptyset$.
c: $\overline{E} = \{(x, y) \in^2 : y \ge x^2, 0 \le y \le 1\}$, $\overset{\circ}{E} = \{(x, y) \in^2 : y > x^2, 0 < y < 1\}$, $\partial E = \{(x, y) \in^2 : y = x^2, 0 < y < 1\} \bigcup \{(x, y) \in^2 : y = 1, -1 \le x \le 1\}$.

Page 260/ #5: Solution

Suppose that $\inf_{\mathbf{x}\in E} ||\mathbf{x}-\mathbf{a}|| = 0$. Then for every $j \in$, there exists \mathbf{x}^j such that $||\mathbf{x}^j-\mathbf{a}|| < 1/j$. But if this is true, then

$$\lim_{j \to \infty} ||\mathbf{x}^j - \mathbf{a}|| \le \lim_{j \to \infty} 1/j = 0.$$

In other words $\mathbf{x}^j \to \mathbf{a}$, so \mathbf{a} is a limit point of E. Since E is closed, we must have that $\mathbf{a} \in E$. This contradicts the hypothesis that $\mathbf{a} \notin E$. Hence our initial supposition was wrong, and we conclude that $\inf_{\mathbf{x}\in E} ||\mathbf{x}-\mathbf{a}|| > 0$.

Page 260/ #7: Solution

- **a:** A = [0, 1], B = [1, 2].
- **b:** A = (0, 1), B = (1, 2).
- c: A = [0, 1], B = [1, 2] for the first part and A = (0, 1), B = (1, 2) for the second part. (Note that there's a typo in the statement of the problem. The last " $\partial A \cup \partial B$ " should be " $\partial A \cap \partial B$ " instead.)