Solutions for Homework 9

From Wade’s book:

e Pages 250-252: 2, 3, 6, 8

e Pages 259-260: 2 (OE—the ‘boundary of E’is E — LO?), 5, 7
Page 251/ #2: Solution

Let a = (z,y) and h = (hy, hy) be points in R?. Let
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fla+h) = f(a) = T(h) = (hihs, 0, A} — h3).

Therefore,
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Therefore f is differentiable at a, and D f,(h) = T'(h).
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Page 251/ #6a: Solution

Suppose that f and g are differentiable at a. Then
(f +g)a+h) = (f+g)(a) — Dfa(h) — Dga(h)||
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That is, f 4 g is differentiable at a, and D(f + ¢g)a = D fa + Dga.
Page 251/ #8: Solution

Since T is linear,
T(a+h)—T(@)—T(h)=T(a+h—-—a—h)=T(0)=0
for every a,h €”. Hence,

o [T+ 1) = T(a) = T(h))|
o ]

Therefore, T is differentiable at a, and DT,(h) = T'(h) for every a €”.
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Page 260/ #2: Solution

aa E=1F, E= {(z,y) €% 2* +4y* < 1}, and OF = {(z,y) €% 2*> + 4y*> = 1}

b: E=FE=0E,E=

c: BE={(z,y) €& y>220<y<1}, E={(z,y) €y >220<y <1}, OF =
{y) ey=2*0<y <P UN(z,y) €y=1-1<x<1}

= 0.



Page 260/ #5: Solution

Suppose that infyc g [|x—al|| = 0. Then for every j €, there exists x/ such that ||x/ —a|| < 1/;.
But if this is true, then '

lim ||x/ —a|| < lim 1/5 = 0.

j—o0 j—00

In other words x? — a, so a is a limit point of E. Since E is closed, we must have that a € E.
This contradicts the hypothesis that a ¢ E. Hence our initial supposition was wrong, and
we conclude that infyeg ||x — al| > 0. O

Page 260/ #7: Solution

a: A=10,1], B=1[1,2].

b: A=(0,1), B=(1,2).

c: A=[0,1], B = [1,2] for the first part and A = (0,1), B = (1,2) for the second part.
(Note that there’s a typo in the statement of the problem. The last “0AUJB” should
be “OANOB” instead.)



