1. For any three subsets A, B, C of a universe U prove that

$$
(A-B)-C=A-(B C)=(A-C)-(B-C) .
$$

2. Determine if each of the following mappings is injective, surjective, bijective?
(a) $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}, f(n)=\left\{\begin{array}{l}(n+1) / 2 \text { if } n \text { is odd } \\ n / 2 \text { if } n \text { is even }\end{array}\right.$
(b) $g: \mathbf{Z} \times \mathbf{Z}^{+} \rightarrow \mathbf{Q}, \quad g(n, m)=\frac{n}{m}$
(c) $h: \mathbf{R}^{+} \rightarrow\{x \in \mathbf{R} \mid x>1\}, \quad h(x)=1+x^{2}$.

For all bijective mappings find its inverse.
3. Factor the following permutation into disjoint cycles.
(a) $\left(\begin{array}{ll}1 & 23456789 \\ 3 & 89521647\end{array}\right)$, (b) $(12345)(67)(1357)(163)$
4. Prove that there are no two permutations ρ and σ in S_{4} such that simultaneously

$$
\rho \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) \text { and } \sigma \rho=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) .
$$

5. Find the greatest common divisor of the numbers 346 and 461 and represent it as a linear combination of the two numbers
6. Prove using the representation of the greatest common divisor of two integers as their linear combination that if a and b are relatively prime then also a^{2} and b are relatively prime.

Student's name:
7. Prove that if $n \equiv 7(\bmod 12)$, then $n \equiv 3(\bmod 4)$.
8. Find all integers $k \geq 2$, such that $k^{2} \equiv 3(\bmod k)$

Student's name:
9. Find all solutions of the system of equations

$$
\begin{array}{ll}
{[3] x+[2] y=[1]} \\
{[5] x+y=[1]} & \text { in } \mathbf{Z}_{11} .
\end{array}
$$

10. Find all third roots of $8 i$. Express them in the standard form.
