1. Define:

(a) Group.

(b) Abelian group.

(c) Cyclic group.

- 2. Define:
 - (a) subgroup

(b) left coset

(c) right coset

(d) Normal subgroup

3. Define:

(a) Isomorphism of groups.

(b) Automorphism

(c) Inner automorphism

(d) Homomorphism.

Give a necessary and sufficient condition for a subset H of a group G, to be a subgroup.

How can this condition be weakened, if the subset is finite.

5. A_3 can be treated as a subgroup of A_4 in a natural way, as the set of all even permutations on $\{1, 2, 3, 4\}$, which leave 4 unchanged. What is the index of A_3 in A_4 ? Find the left coset $(1 \ 4)A_3$ and the right coset A_3 (1 4). What permutations are common to the two sets? 6. Prove: A cyclic group of order *n* has a subgroup of order *m* , whenever m|n.

7. Let G_1 and G_2 be groups with operations \cdot and * and identity elements e_1 and e_2 , respectively. Prove that the set $G_1 \times G_2$ of ordered pairs (x_1, x_2) , where $x_1 \in G_1$ and

 $x_2 \in G_2$, with operation: $(x_1, x_2) (y_1, y_2) = (x_1 \cdot y_1, x_1 * y_1)$ forms a group.

Prove that every element of the form (x_1, e_2) commutes with every element of the form

 $(e_1, y_2).$

8. Let $h: S_n \rightarrow \mathbb{Z}_2$ be defines by formula $h(\sigma) = \begin{cases} [0] & \text{if } \sigma \text{ is an even permutation} \\ [1] & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$ Prove that *h* is a homomorphism and find the kernel.

9. Prove that a kernel of a homomorphism form G to G' is a normal subgroup of G.

10. Prove that if $h: G \rightarrow$ is a homomorphism, then h(G) is a subgroup of G'.