1. Decide about each of the following binary relations on Z if it is an equivalence relation. If so, describe the equivalence classes. Justify your answer

(a)
$$x \sim y$$
 if and only if $y \mid x$,

(b)
$$x \sim y$$
 if and only if $x^2 = y^2$,

(c)
$$x \sim y$$
 if and only if $x^3 = y^3$,

(d) $x \sim y$ if and only if x = 2y,

2. Find the greatest common divisor of 1680 and 208.

3. Find the general solutions of the congruence $6x = 4 \pmod{14}$.

4. Find all complex numbers z such that $z^3 = 27i$.

5. Find the complex number $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{1996}$.

6.

Co mpute in Z₇ : Error!

•

7. How many distinct <u>non-trivial proper</u> cyclic subgroups are there in the additive group \mathbf{Z}_{12} ?

- 8. Which of the following mappings is an epimorphism of additive groups $Z \oslash Z_4$? [Recall that an epimorphism is a surjective homomorphism.]
 - (a) $n \oslash [2n]$,

(b) $n \oslash [n+1],$

(c) $n \oslash [5n]$,

(d) $n \oslash [n^2],$

9. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 2 & 6 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2 \end{pmatrix}$. Factor $\sigma \tau \sigma^{-1}$ into disjoint cycles.

10. What is the order of the element $(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7)$ in S_7 ?

11. Let *H* be the subgroup of S_4 generated by the cycle (1 2 3). Find the left coset of *H*, which contains the element (1 2 3 4).

12. A group G has a subgroup of order 45 and a subgroup of order 75. Find the order of G knowing that o(G) < 400.

- **13**. Decide about each of the following rings whether it is a domain, an integral domain, a division algebra or a ring.
 - (a) **Z**₁₁

(b) $M_2(\mathbf{Z})$ = the set of 2∞2 matrices with entries from \mathbf{Z} ,

(c) The set matrices of the form $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, where $a \in \mathbb{Z}$.

(d) $\{2m + 2ni \mid m, n \in \mathbb{Z}\}\$ as a subring of \mathbb{C} ,

14. Find the greatest common divisor of the polynomials $x^4 + x^3 + x + 1$ and $x^2 + 1$ over the field of all rational numbers **Q**.

15. Which of the following polynomials in $\mathbf{Q}[x]$ belongs to the principal ideal generated by x - 1?

(a)
$$x^3 + x^2 + x + 1$$
,

(b)
$$x^3 - x^2 + x - 1$$
,

(c)
$$x^3 + x^2 + 1$$
,

(d) $x^2 + 1$

16. The same question in $\mathbf{Z}_3[x]$.

17. Over which of the fields below is the polynomial $x^2 - 2$ reducible? Justify your answer. (a) \mathbf{Z}_3 ,

(b) \mathbf{Z}_5 ,

(c) **Q**,

(d) **R**.