1. Decide about each of the following binary relations on \mathbf{Z} if it is an equivalence relation. If so, describe the equivalence classes. Justify your answer
(a) $x \sim y$ if and only if $y \mid x$,
(b) $x \sim y$ if and only if $x^{2}=y^{2}$,
(c) $x \sim y$ if and only if $x^{3}=y^{3}$,
(d) $x \sim y$ if and only if $x=2 y$,
2. Find the greatest common divisor of 1680 and 208.
3. Find the general solutions of the congruence $6 x=4(\bmod 14)$.
4. Find all complex numbers z such that $z^{3}=27 i$.
5. Find the complex number $\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{1996}$.
6.

Co
mpute
in \mathbf{Z}_{7} :
Error:
7. How many distinct non-trivial proper cyclic subgroups are there in the additive group \mathbf{Z}_{12} ?
8. Which of the following mappings is an epimorphism of additive groups $\mathbf{Z} \varnothing \mathbf{Z}_{4}$? [Recall that an epimorphism is a surjective homomorphism.]
(a) $n \varnothing[2 n]$,
(b) $n \varnothing[n+1]$,
(c) $n \varnothing[5 n]$,
(d) $n \varnothing\left[n^{2}\right]$,
9. $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 2 & 6\end{array}\right), \tau=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2\end{array}\right)$. Factor $\sigma \tau \sigma^{-1}$ into disjoint cycles.
10. What is the order of the element $(1234)(567)$ in S_{7} ?
11. Let H be the subgroup of S_{4} generated by the cycle (123). Find the left coset of H, which contains the element (1 2334).
12. A group G has a subgroup of order 45 and a subgroup of order 75 . Find the order of G knowing that $o(G)<400$.
13. Decide about each of the following rings whether it is a domain, an integral domain, a division algebra or a ring.
(a) \mathbf{Z}_{11}
(b) $\mathrm{M}_{2}(\mathbf{Z})=$ the set of $2 \infty 2$ matrices with entries from \mathbf{Z},
(c) The set matrices of the form $\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$, where $a \quad \mathbf{Z}$.
(d) $\{2 m+2 n i \mid m, n \quad \mathbf{Z}\}$ as a subring of \mathbf{C},
14. Find the greatest common divisor of the polynomials $x^{4}+x^{3}+x+1$ and $x^{2}+1$ over the field of all rational numbers \mathbf{Q}.
15. Which of the following polynomials in $\mathbf{Q}[x]$ belongs to the principal ideal generated by $x-1$?
(a) $x^{3}+x^{2}+x+1$,
(b) $x^{3}-x^{2}+x-1$,
(c) $x^{3}+x^{2}+1$,
(d) $x^{2}+1$
16. The same question in $\mathbf{Z}_{3}[x]$.
17. Over which of the fields below is the polynomial $x^{2}-2$ reducible? Justify your answer.
(a) \mathbf{Z}_{3},
(b) \mathbf{Z}_{5},
(c) \mathbf{Q},
(d) \mathbf{R}.

