[11pt]article graphicx amssymb epstopdf .tifpng.png‘convert 1 'dirname 1 '/‘basename 1 .tif'.png $=6.5 \mathrm{in}=9 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}$
theoremTheorem corollary[theorem]Corollary definitionDefinition document

Math 361 Exam 1; Mon Oct 13, 10:40-11:30am

Instructions. Answer questions 1-6. You must show all necessary working to receive full points, unless otherwise indicated.

1. (10 points) Let $G=S_{4}$ denote the symmetric group $A(\{1,2,3,4\})$ on 4 letters. Define the elements $g=\left(\begin{array}{llll}1 & 2 & 4 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ and $h=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$ in G.
(a) Calculate $g^{-1} h$.
(b) List the elements of the cyclic group generated by g. What is the order of g ?

2. (20 points)

(a) Give a careful definition of the term "group."
(b) State whether the following are groups or not (no working is required): (1) the set of real numbers with binary operation $*$ given by $a * b=2(a+b)(2)$ the set of all positive real numbers under multiplication (3) the set of all non-negative real numbers under addition.
3. (10 points) Let G be a group.
(a) State formulae for $(a b)^{-1}$ and $\left(a^{-1}\right)^{-1}$, for $a, b \in G$.
(b) For $x, y \in G$, define the "commutator" $[x, y]$ of x and y by $[x, y]:=x y x^{-1} y^{-1}$. Show by direct calculation, using the formulae from (a), that if $x, y, z \in G$, then

$$
\left[z x z^{-1}, z y z^{-1}\right]=z[x, y] z^{-1}
$$

4. (20 points) Let G be the group of non-zero real numbers under multiplication. (You do NOT have to prove that G is a group).
(a) Prove that $H=\left\{2^{n} \mid n \in Z\right\}$ is a subgroup of G.
(b) Let n be a positive integer. Prove that the function $f: G \rightarrow G$ given by $f(x)=x^{n}$ is a group homomorphism.
(c) Find the kernel and image of f (your answer to this part will depend on whether n is even or odd). For which values of n is f an isomorphism?
5. (20 points) (a) Explain what is meant by a right coset $H g$ of a subgroup H of a group G. Define the index $[G: H]$ of H in G.
(b) State Lagrange's theorem, and explain briefly how cosets are involved in its proof.
(c) Is it possible for a group of order 75 to have (1) a subgroup of order 50? (2) an element of order 15 ? (3) a subgroup of index 10 ? (Simply state yes or no for each part; no working is required).
6. (20 points) Let $G=Z_{19}^{*}$ be the group of units of the integers mod 19, consisting of congruence classes $[n]$ modulo 19 with $\operatorname{gcd}(n, 19)=1$, under the multiplication $[n][m]=[n m]$. (You do NOT have to prove G is a group).
(a) Determine whether G is a cyclic group.
(b) List the 6 elements of the cyclic subgroup H of G generated by [8].
(c) Find all the distinct right cosets of H in G. What is the index $[G: H]$?
(d) Explain briefly why H is a normal subgroup of G. Write down the multiplication table for the quotient group G / H.
