Math 361 Exam 2; Mon Nov 24, 1997; 10:40-11:30am

Instructions. Answer questions 1–4. You must show all necessary working to receive full points for a problem.

- **1.** (25 points) Let S_6 denote the symmetric group on six letters. Let $g = (4,3,5)(4,3,2)(6,5) \in S_6$.
- (a) Express g as a product of disjoint cycles.
- (b) Express g as a product of transpositions (two-cycles).
- (c) Is g even or odd? For which integers n is g^n an element of the alternating group A_6 ?
- (d) Compute the order of g.
- (e) Find an element *h* of S_6 such that $hgh^{-1} = (1, 6)(2, 3, 4)$.
- **2.** (25 points)
- (a) Calculate $(2+i-3j)(1-i+j)^{-1}$ in the ring of quaternions.
- (b) In each part (i)-(iv), either give an example of a ring R satisfying the indicated condition or prove there is no such ring: (i) R is commutative but not an integral domain (ii) R is an integral domain but not a field (iii) R is a field but not an integral domain (iv) R is a division ring but not a field.

3. (30 points)

- (a) For a ring R, explain carefully what is meant by saying that I is an ideal of R.
- (b) Check that $I = \{[0], [3]\}$ is an ideal of the ring $R = Z_6$. List the distinct cosets of I in R and write down the multiplication and addition tables for the quotient ring R/I.
- (c) State the isomorphism theorem giving the relationship between S, T and the kernel of a surjective ring homomorphism $\theta: S \to T$.
- (d) Describe explicitly a surjective ring homomorphism $\theta: Z_6 \to Z_3$ with ker $\theta = I$, and conclude that there is a ring isomomorphism

 $Z_6/I \cong Z_3.$

- (e) List all the ideals J of Z_6 (there are four of them including I) and decide which are maximal ideals.
- **4.** (20 points) Suppose that R is a "Boolean ring" i.e. a ring such that $x^2 = x$ for all $x \in R$.
- (a) By considering $(a+1)^2$, show that a = -a for every $a \in R$.
- (b) Prove that R is commutative by considering $(c+d)^2$ for $c, d \in R$ and using (a).
- (c) Explain what is meant by the characteristic of a commutative ring. What is the characteristic of R?
- (d) Give an example of a Boolean ring.