Math 361 Exam 2; Mon Nov 24, 1997; 10:40-11:30am

Instructions. Answer questions 1-4. You must show all necessary working to receive full points for a problem.

1. (25 points) Let S_{6} denote the symmetric group on six letters. Let $g=(4,3,5)(4,3,2)(6,5) \in S_{6}$.
(a) Express g as a product of disjoint cycles.
(b) Express g as a product of transpositions (two-cycles).
(c) Is g even or odd? For which integers n is g^{n} an element of the alternating group A_{6} ?
(d) Compute the order of g.
(e) Find an element h of S_{6} such that $h g h^{-1}=(1,6)(2,3,4)$.
2. (25 points)
(a) Calculate $(2+i-3 j)(1-i+j)^{-1}$ in the ring of quaternions.
(b) In each part (i)-(iv), either give an example of a ring R satisfying the indicated condition or prove there is no such ring: (i) R is commutative but not an integral domain (ii) R is an integral domain but not a field (iii) R is a field but not an integral domain (iv) R is a division ring but not a field.
3. (30 points)
(a) For a ring R, explain carefully what is meant by saying that I is an ideal of R.
(b) Check that $I=\{[0],[3]\}$ is an ideal of the ring $R=Z_{6}$. List the distinct cosets of I in R and write down the multiplication and addition tables for the quotient ring R / I.
(c) State the isomorphism theorem giving the relationship between S, T and the kernel of a surjective ring homomorphism $\theta: S \rightarrow T$.
(d) Describe explicitly a surjective ring homomorphism $\theta: Z_{6} \rightarrow Z_{3}$ with ker $\theta=I$, and conclude that there is a ring isomomorphism

$$
Z_{6} / I \cong Z_{3} .
$$

(e) List all the ideals J of Z_{6} (there are four of them including I) and decide which are maximal ideals.
4. (20 points) Suppose that R is a "Boolean ring" i.e. a ring such that $x^{2}=x$ for all $x \in R$.
(a) By considering $(a+1)^{2}$, show that $a=-a$ for every $a \in R$.
(b) Prove that R is commutative by considering $(c+d)^{2}$ for $c, d \in R$ and using (a).
(c) Explain what is meant by the characteristic of a commutative ring. What is the characteristic of R ?
(d) Give an example of a Boolean ring.

