Math 361 Final Exam; Tues Dec 16, 1997 8:00-10:00am

Instructions. Answer questions 1-5. You must show all necessary working to receive full points for a problem.

1. (30 points)
(a) Find all the rational numbers which are roots of the polynomial $X^{4}+2 X^{3}+X+2$, and hence factor this polynomial into a product of monic irreducible polynomials in $Q[X]$.
(b) State Eisenstein's criterion and use it to show that the polynomial

$$
f(X)=20 X^{5}-12 X^{4}+15 X^{3}-63 X^{2}+30 X-60
$$

is irreducuble over the rational numbers.
(c) Let $g=(1,2)(3,4,5,6)$ and $h=(6,5)(4,3,2,1)$ in the symmetric group S_{6} on six letters. Find an element $x \in S_{6}$ so $g=x h x^{-1}$.
2. (30 points) Let G be a group and H be a subgroup of G.
(a) Carefully explain what is meant by the left coset $g H$ of an element g of G.
(b) Define the index $[G: H]$ of H in G.
(c) Suppose that G is finite. Define the order $|G|$ of G. What is the relationship between the orders of G and H, and the index $[G: H]$?
(d) Define the order of an element $g \in G$. Use your answer to (c) to show that if G is a finite group, the order of g divides the order of G.
3. (30 points) In this question, G denotes the subset $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ of 8 elements of the quaternions. You may ASSUME that G is a group under the usual multiplication of quaternions.
(a) Show that $N=\{ \pm 1\}$ is a normal subgroup of G.
(b) Explicitly list the elements of the cosets $g N$ of N in G.
(c) Write down the multiplication table for the quotient group G / N.
(d) Show that G / N is isomorphic to $Z_{2} \times Z_{2}$ by explicitly describing an isomorphism between these two groups.
4. (30 points) Let R be a ring, and I, J be two ideals of R.
(a) Define the terms ring and ideal.
(b) Show carefully that $I \cap J$ is an ideal of R, and that if $x \in I$ and $y \in J$, then $x y \in I \cap J$.
(c) Explain what is meant by saying that R is an integral domain.
(d) Suppose that R is an integral domain and $I \cap J=\{0\}$. Use your answer to (b) to show that either $I=\{0\}$ or $J=\{0\}$.
5. (30 points) Let $R=Z_{2}[X]$ denote the ring of polynomials in the variable X over the field of 2 elements. Set $a(X)=X^{4}+X+1 \in R$ and $b(X)=X^{2}+1 \in R$.
(a) Prove that $a(X)$ is an irreducible polynomial in R. Is $b(X)$ irreducible?
(b) Find explicitly polynomials $f(X)$ and $g(X)$ so that $f(X) b(X)+g(x) a(X)=1$.
(c) Explicitly list the distinct elements of the ring R / I where $I=(a(X))$ is the principal ideal generated by $a(X)$. Explain why R / I is a field. How many elements does R / I have?
(d) In R / I, prove that $(b(X)+I)^{2}=X+I$, and calculate $(b(X)+I)^{-1}$ explicitly.

