Name _____

MATHEMATICS 361 Final Examination December 15, 1999

6 questions

Note: A proof is needed in an answer only when the word "prove" appears in the question.

Z and Q denote the ring of integers and the field of rational numbers.

1 (21 points) Suppose a, b are integers, not both 0.

(a) Give a careful definition of the greatest common divisor *c* of *a* and *b*.

(b) Prove that *c* is equal to the smallest positive integer in the set $\{ma + nb | m, n \in \mathbb{Z}\}$.

(c) Prove that, if $d \in \mathbf{Z}$ and *a* divides *bd*, then *a* divides *cd*.

2 (30 points) Let *S* be the set of all ordered pairs (a,b), where *a* and *b* are non-negative integers. Define $(a,b) \sim (c,d)$ to mean that a + d = c + b.

(a) Prove that \sim is an equivalence relation on *S*.

- (b) Let [a,b] denote the equivalence class of (a,b). How is this defined?
- (c) Let *T* be the set of all equivalence classes, and let the map $\theta: T \rightarrow \mathbf{Z}$ be given by

$$\theta([a,b]) = a - b.$$

Prove that θ is a well-defined map.

(d) Prove that θ is a bijection.

- 3 (21 points) Suppose H is a subgroup of a group G.
- (a) Define what it means for H to be normal in G.

(b) If *H* is normal in *G*, explain what the elements of the quotient group G/H are and how they are multiplied, and give the definition of the natural homomorphism $\theta: G \to G/H$.

(c) Give the definition of the kernel of a group homomorphism, and prove that the kernel of the homomorphism θ in (b) is equal to *H*.

4 (30 points) Let *R* , *R'* be rings, and θ : $R \rightarrow R'$ a surjective homomorphism.

(a) Define the kernel of θ , and prove that it is an ideal of *R*.

(b) Explain the connection between the ideals of R' and the ideals of R.

(c) If *R*' is commutative (and has a unit element), give a condition regarding ideals of *R*' under which *R*' will be a field. How does this translate into a condition regarding ideals of *R*?

5 (24 points) Let S_n and A_n be the symmetric and alternating groups of degree n, n > 1.

(a) Define what it means for an element of S_n to be a cycle of length k.

(b) Given an expression of an element σ of S_n as a product of disjoint cycles, explain how to find the order of σ , and how to determine whether or not σ lies in A_n .

(c) Prove that S_5 has an element of order 6, but A_5 does not.

6 (24 points) Suppose f(x), p(x) are non-zero polynomials in Q[x].

(a) Give a condition involving an ideal or ideals, which is equivalent with p(x) dividing f(x) in Q[x].

(b) Give a condition involving an ideal, which is equivalent with p(x) being an irreducible polynomial in Q[x].

For the rest of the question, let $f(x) = 2x^4 - 3x^3 + x^2 + 4x - 2$.

(c) Find all the rational roots of f(x).

(d) Factor f(x) into a product of irreducible polynomials in Q[x].

(e) Find all the maximal ideals of Q[x] which contain f(x).