MATHEMATICS 361
Final Examination
December 15, 1999

Name \qquad
6 questions

Note: A proof is needed in an answer only when the word "prove" appears in the question.
Z and Q denote the ring of integers and the field of rational numbers.

1 (21 points) Suppose a, b are integers, not both 0 .
(a) Give a careful definition of the greatest common divisor c of a and b.
(b) Prove that c is equal to the smallest positive integer in the set $\{m a+n b \mid m, n \in \mathbf{Z}\}$.
(c) Prove that, if $d \in \mathrm{Z}$ and a divides $b d$, then a divides $c d$.

2 (30 points) Let S be the set of all ordered pairs (a, b), where a and b are non-negative integers. Define $(a, b) \sim(c, d)$ to mean that $a+d=c+b$.
(a) Prove that \sim is an equivalence relation on S.
(b) Let $[a, b]$ denote the equivalence class of (a, b). How is this defined?
(c) Let T be the set of all equivalence classes, and let the map $\theta: T \rightarrow \mathrm{Z}$ be given by

$$
\theta([a, b])=a-b .
$$

Prove that θ is a well-defined map.
(d) Prove that θ is a bijection.

3 (21 points) Suppose H is a subgroup of a group G.
(a) Define what it means for H to be normal in G.
(b) If H is normal in G, explain what the elements of the quotient group G / H are and how they are multiplied, and give the definition of the natural homomorphism $\theta: G \rightarrow G / H$.
(c) Give the definition of the kernel of a group homomorphism, and prove that the kernel of the homomorphism θ in (b) is equal to H.

4 (30 points) Let R, R^{\prime} be rings, and $\theta: R \rightarrow R^{\prime}$ a surjective homomorphism.
(a) Define the kernel of θ, and prove that it is an ideal of R.
(b) Explain the connection between the ideals of R^{\prime} and the ideals of R.
(c) If R^{\prime} is commutative (and has a unit element), give a condition regarding ideals of R^{\prime} under which R^{\prime} will be a field. How does this translate into a condition regarding ideals of R ?

5 (24 points) Let S_{n} and A_{n} be the symmetric and alternating groups of degree $n, n>1$.
(a) Define what it means for an element of S_{n} to be a cycle of length k.
(b) Given an expression of an element σ of S_{n} as a product of disjoint cycles, explain how to find the order of σ, and how to determine whether or not σ lies in A_{n}.
(c) Prove that S_{5} has an element of order 6 , but A_{5} does not.

6 (24 points) Suppose $f(x), p(x)$ are non-zero polynomials in $\mathrm{Q}[x]$.
(a) Give a condition involving an ideal or ideals, which is equivalent with $p(x)$ dividing $f(x)$ in $\mathrm{Q}[x]$.
(b) Give a condition involving an ideal, which is equivalent with $p(x)$ being an irreducible polynomial in $\mathrm{Q}[x]$.

For the rest of the question, let $f(x)=2 x^{4}-3 x^{3}+x^{2}+4 x-2$.
(c) Find all the rational roots of $f(x)$.
(d) Factor $f(x)$ into a product of irreducible polynomials in $\mathrm{Q}[x]$.
(e) Find all the maximal ideals of $\mathrm{Q}[x]$ which contain $f(x)$.

