MATHEMATICS 361
Test 2
October 13, 1999

Name \qquad
3 questions

1 (40 points)
Suppose G, G^{\prime} are groups, $\theta: G \varnothing G^{\prime}$ a mapping.
(a) Define what it means for θ to be a homomorphism.

For the rest of this question, suppose θ is a homomorphism.
(b) Define the kernel $\operatorname{Ker} \theta$ of θ, and show that $\operatorname{Ker} \theta$ is a normal subgroup of G .

For the rest of this question, suppose H is a subgroup of G , and $\mathrm{H}^{\prime}=\theta(\mathrm{H})$ the image of H under θ.
(c) Show that H^{\prime} is a subgroup of G^{\prime}.
(d) Show that the inverse image $\theta^{-1}\left(H^{\prime}\right)=\left\{\begin{array}{lll}\mathrm{x} & \mathrm{Gl} \theta(\mathrm{x}) & \mathrm{H}^{\prime}\end{array}\right\}$ is equal to HK (i.e., the set $\left\{\begin{array}{l}\mathrm{hklh} \\ \mathrm{H}, \mathrm{k} \quad \mathrm{K}\} \text {). }\end{array}\right.$
2. (30 points)

Let G be the set of all ordered pairs (a, b), where a and b are real numbers, with $a \neq 0$. Provide G with a multiplication, given by

$$
(\mathrm{a}, \mathrm{~b})(\mathrm{c}, \mathrm{~d})=(\mathrm{ac}, \mathrm{bc}+\mathrm{d}) .
$$

Then G is a group, with identity element $(1,0)$. [You don't have to prove that statement.]
(a) If $(a, b) \quad G$, find $(a, b)^{-1}$.
(b) Show that the set $\mathrm{H}=\{(1, \mathrm{~b}) \mathrm{lb} \quad \mathrm{R}\}$ of all elements of the form $(1, b)$ in G is a normal subgroup of G, and that the quotient group G / H is isomorphic with the multiplicative group R' of all nonzero real numbers.

3.(30 points)

Let G be the multiplicative group of all nonzero rational numbers, and let H, K be the subsets of G given by

$$
\begin{gathered}
\mathrm{H}=\left\{2^{\mathrm{n} \mid n} \quad \mathrm{Z}\right\} \\
\mathrm{K}=\left\{\frac{\mathrm{a}}{\mathrm{~b}} \quad \mathrm{la}, \mathrm{~b} \quad \mathrm{Z}, \mathrm{a} \text { and } \mathrm{b} \text { both odd }\right\},
\end{gathered}
$$

where Z denotes the set of all integers. Show that
(a) H and K are subgroups of G .
(b) $\mathrm{G}=\mathrm{H} \propto \mathrm{K}$.

