MATHEMATICS 361
Test 3
November 15, 1999

Name \qquad
4 questions

1 (20 points)
(a) Express the permutation (1324)(45)(273)(456) as a product of disjoint cycles, and find its order.
(b) Express the permutation $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 7 & 1 & 2 & 6 & 8 & 3\end{array}\right)$ as a product of transpositions (2-cycles).
(c) If $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2\end{array}\right)$, is σ^{1999} even or odd?
2. (20 points)

Complete the following statements.
(a) A subset S of a ring R is a subring of R if
(b) A subset H of a ring R is a left ideal of R if
(c) A subset I of a ring R is a two-sided ideal of R if
(d) An element a of a commutative ring R is a zero-divisor in R if
(e) A commutative ring R is an integral domain if
3. (32 points)

Fix an integer n . For integers a, b, set

$$
A_{a, b}=\left(\begin{array}{cc}
a & b \\
n b & a
\end{array}\right)
$$

and let $R=\left\{A_{a, b} \mid a, b \in \mathbf{Z}\right\}$ (where Z denotes the ring of integers).
(a) Show that R is a commutative subring of the $\operatorname{ring} M_{2}(Z)$ of all 2×2 matrices with integer coefficients.
(b) By computing the product $\mathrm{A}_{\mathrm{a}, \mathrm{b}} \mathrm{A}_{\mathrm{a},-\mathrm{b}}$ (or otherwise), show that, if $a^{2} \neq n b^{2}$, then $A_{a, b}$ is not a zero-divisor in R.
(c) Show that, if $\mathrm{a}^{2}=\mathrm{nb}^{2}$, then $\mathrm{A}_{\mathrm{a}, \mathrm{b}}$ is a zero-divisor in R .
4. (28 points)

Suppose J and K are subsets of a ring R , and let I be the set of all elements a of R with the property that $a x \in K$, for all x in J. Show that
(a) If K is a left ideal of R, then I is also a left ideal of R.
(b) If J, K are both left ideals of R , then I is a two-sided ideal of R .

