Action of a Group on a Set

Suppose G is a group, S is a set, and A(S) is the group of all permutations on S
(bijections of S on itself).

Definition. A homomorphism 6 : G — A(S) is called a permutation representation
of Gon S, and G is said to acton S .

Notation. If a € G , we write 6, for the image of a under 6 , rather than 6(a), so
that 64 is a map of S to S, and, if s € S, 0,4(s) is the image of s under 65, .

Note that, if a, b € G, and e is the identity element of G, then
(%) Bab = 020p , Be = is (the identity map on S).

Conversely, if G is a group, S is a set, and for every element a in G there is
defined amap 6,:S — S, in such a way that (*) is satisfied, then in fact each 6,4
must be a bijection, and we have a permutation representation 6 of Gon S .
(Exercise.)

Examples.

(1) G =R (the group of real numbers under addition), S = C (the complex plane),
0a(s) = seid | (84 = rotation through angle a about the origin).

(2) G any group, S = G, 0,5(s) = as . (G acts on G by left translation.)

(2") G any group, S = set of all subsets of G, 0;(s) = as = {axIx € s} .

(3) G any group, S = G, 8a(s) = asa'l . (G acts on G by conjugation.)

(3") G any group, S = set of all subsets of G, 8,(s) = asa'l = {axa-llx € s} .

Orbits. Suppose G actson S ,0: G — A(S) . If s, t €S, it may or may not be
possible to find an element a of G such that 0,(s) = t. Define a relation on S by

setting

s ~ t if there exists an element a of G such that 0,(s) = t.
This is an equivalence relation on S . (Exercise.)
The equivalence class of an element s of S is called its orbit under G ,

Orbg(s) = {0a(s)la € G} .
From work on equivalence relations, we have the first part of the
Proposition. (i) The orbits of elements of S form a partition of S .
(ii) If b € G, then 6p maps each orbit Orbg(s) into itself, so that G may be

considered to act on Orbg(s) . (Exercise.)

Examples. (Numbers refer to the list of examples given before.)
(1) Orbits are circles centered at the origin.
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(2) There is just one orbit, the whole of G .
(2") Suppose H is a subgroup of G (so H is an element of S). Then Orbg(H) is the
set of all left cosets aH of Hin G .

(3), (3") The orbit of an element x or a subset x of G under conjugation is called
the conjugacy class of x in G,
clg(x) = {faxallae G} .

Stabilizers. Suppose G actson S, 0: G — A(S) . If s€ S, its stabilizer in G is
Stabg(s) = {a € Gloa(s) = s} .
This is a subgroup of G . (Exercise.) Since the identity map on S is the map
which fixes every element s of S, it follows that
Ker 0 is the intersection of the stabilizers of all the elements of S .

Examples.
(1) If s = 0, Stabg(s) consists of all integer multiples of 2x .
(

2) Stabg(s) = {e}, for every element s of G .
(2") If H is a subgroup of G , then Stabg(H) = H ; more generally,
Stabg(aH) = aHa-! . (Exercise.)

(3) The stabilizer in G of an element x (under conjugation) is called the
centralizer of x in G , denoted Cg(x) , and
Cg(x) = {a € Glax = xa} .

(3") The stabilizer in G of a subset X (under conjugation) is called the
normalizer of X in G, denoted Ng(X) , and

NG(X) = fa € GlaXal = X} .

Remark. Application of part (ii) of the last proposition to example (2') shows
that, if a group G has a subgroup H of index n , then there is a permutation
representation of G on the set of n left cosets of H in G, given by left translation,
i.e., a homomorphism

¢ : G — Sp (the symmetric group of degree n ).
Since the stabilizer of H is H, the kernel K of ¢ is a normal subgroup of G
contained in H , and G/K is isomorphic with a subgroup of Sy . This generalizes
Cayley's theorem.
Special case. Suppose G is a finite group, and H is a subgroup of index p in G,
where p is the smallest prime number dividing the order IGl . Then H is a normal
subgroup of G .

Proof. The remark above gives a normal subgroup K of G contained in H,
such that G/K is isomorphic with a subgroup of Sp . By Lagrange's theorem, |G/KI
divides p! However,

IG/KI = IGI/IKI = (IGI/IHI)(IHI/IKI) = p(IHI/IKI) ,
and so (IHI/IKI) divides (p - 1)! But (IHI/IKI) is a divisor of |Gl , so it has no prime
divisor less than p . It follows that (IHI/IKI) =1 ,so H=K, so His normal in G .




Homework

1. Suppose that G is a group, S is a set, and for every element a in G there is
defined a map 6, :S — S, in such a way that
0ab = 020p, foralla,beG,
and 6e = is (the identity map on S).
Show that each 6, must be a bijection.

2. Suppose G actson S, 0 : G = A(S) . Show that the relation defined by
setting
s ~ t if there exists an element a of G such that 0,(s) =t

is an equivalence relation on S .

3.Suppose GactsonS,0:G—=A(S).If beG,seS, show that 6p maps
the orbit Orbg(s) into itself.

4. Consider the action of a group G on the set of all its subsets, by left
translation. Let H be a subgroup of G, a € G . Show that the stabilizer

Stabg(aH) of the left coset aH is aHa-1 .



Relation between orbits and stabilizers

Theorem. Suppose G actsonS ,0: G - A(S). LetseS. Thereisa 1-1
correspondence between the orbit Orbg(s) and the set of all left cosets of the
stabilizer Stabg(s) in G , in which 64(s) corresponds to aStabg(s) (a € G).

Proof. Define a map f from Orbg(s) = {0a(s)la € G} to the set {aStabg(s)la € G} of
left cosets, by setting f(064(s)) = aStabg(s). Since an element of Orbg(s) can be
given as 05(s) for more than one element a of G, we need to show that f is well-
defined. This means that, if 0;(s) = 0p(s), then aStabg(s) = bStabg(s) .

So, suppose that 84(s) = 6p(s) . Then, 6p10,(S) = s, SO 6h-1a(s) = s (since 0 is a
homomorphism). Thus, b-la € Stabg(s) , so aStabg(s) = bStabg(s) . So, f is well-
defined.

Running the argument in reverse shows that f is injective. Since f is clearly
surjective, this proves the theorem.

Note. If g € G, then in the action of G on S, g maps 8a(S) on 8g0a(S) = Bga(s) ,
while, in the action of G on the set of left cosets of Stabg(s) , g maps aStabg(s) on
gaStabg(s) , and 6ga(s) and gaStabg(s) correspond under f. So the action of G on
the orbit Orbg(s) is "the same" as the action of G on the set of left cosets of
Stabg(s) in G .

Corollary to Theorem. If a is an element of a group G , the number of elements of
the conjugacy class clg(a) of a in G is equal to the index [G:Cg(a)] in G of the

centralizer Cg(a) . If G is finite, this is a divisor of the order |Gl .

Corollary (The class equation) If G is a finite group, then
IGl = 1Z(G)I +2[G:CG(a)] ,

a
where a runs over a set of representatives of the conjugacy classes of noncentral
elements of G, and Z(G) is the center of G ..

Proof. Since the conjugacy classes partition G , the number of elements in G is
the sum of the numbers of elements in the conjugacy classes. From the previous
result,

IGl = E[G:CG(a)] ,

a

where a runs over a set of representatives of all the conjugacy classes of G . Split
the sum up into those terms which are 1 and those which are greater than 1.
Since clg(a) contains just one element, a itself, if and only if a € Z(G) (Exercise),
the sum of the terms which are 1 is the order IZ(G)I .
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Example. If p is a prime number, a group whose order is a power of p is called a
p-group. If G is a p-group, not the trivial group {e}, then each term [G:Cg(a)] in
the class equation is a power of p since it divides |Gl , and so is divisible by p , if
a is noncentral. Since IGl is also divisible by p , it follows that IZ(G)l is divisible by
p . Thus, the center of a nontrivial p-group is also nontrivial. This fact makes it
possible to prove many results about p-groups, by induction on the order. (See
p.104 of the textbook.)

Sylow's Theorem

If G is a finite group, and m is a divisor of the order |Gl , G may not have a
subgroup of order m , so Lagrange's theorem does not have a full converse.
However, there is a partial converse.

Theorem (First Sylow Theorem) If G is a finite group, p a prime number, and pk
divides IGl , then G has at least one subgroup of order pk.

Proof The result is true if IGl = 1 . Use induction on |G| ; assume that it is true for
all groups of order less than IGl .

The result is also true if k = 0 . Assume k > 0, so that p divides |G| .

Case 1. Suppose p divides IZ(G)I . By Cauchy's theorem applied to the abelian
group Z(G) , Z(G) has a subgroup H of order p . Then H is a normal subgroup of
G, and pk'1 divides IG/HI . By induction hypothesis, G/H has a subgroup of
order pk-1 | By the correspondence theorem, this has the form K/H , where K is a
subgroup of G containing H. Then IK| = [K/H| [HI = pk-1p = pk .

Case 2. Suppose p does not divide IZ(G)!l . From the class equation, there exists a
noncentral element a such that p does not divide [G:Cg(a)] . Then ICg(a)l < IGI,

and also IGl = [G:Cg(a)] ICg(a)l shows that pk divides ICg(a)l . By induction
hypothesis, Cg(a) has a subgroup of order pk.

Remarks (1) It can be shown that the number of subgroups of order pX is of the
form 1 + rp, for some integer r .

(2) Two subgroups of the same order pK in G are not necessarily isomorphic.
However, if k is the largest integer such that pk divides IGl , a subgroup of order
pk is called a Sylow p-subgroup (or p-Sylow subgroup) of G , and it can be shown
that any two Sylow p-subgroups of G are necessarily conjugate in G , and in
particular are isomorphic.

(3) It can be shown that if H is any p-subgroup of G (subgroup of order a power
of p), then there exists at least one Sylow p-subgroup of G which contains H .

Example Suppose G is a group of order pgb , where p and q are prime numbers,
and p < q. Then G has a Sylow g-subgroup H , and the indexof Hin Gis p.
Since p is the smallest prime divisor of IGl| , H is a normal subgroup of G, so G is
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not a simple group. A famous (among group-theorists) theorem of Burnside
(1911) shows that a group of order pagb cannot be simple.

Homework

1. Let a be an element of a group G . Show that the following are equivalent:
(1) The conjugacy class clg(a) of a in G consists of just one element.
(2) The centralizer Cg(a) of a in G is equal to G .
(3) a is an element of the center Z(G) of G .

2. If P is a Sylow p-subgroup of a finite group G and it happens to be a normal
subgroup of G, show that every p-subgroup H of G must be contained in P .
(Hint: One way to proceed is to use the natural homomorphism 6 of G onto G/P .
Show that 6 must map H to the identity subgroup.)



