
Action of a Group on a Set 
 
 

Suppose G is a group, S is a set, and A(S) is the group of all permutations on S 
(bijections of S on itself). 
 
Definition. A homomorphism θ : G → A(S) is called a permutation representation 
of G on S, and G is said to act on S . 
 
Notation. If a ∈ G , we write θa for the image of a under θ , rather than θ(a), so 
that θa is a map of S to S, and, if s ∈ S, θa(s) is the image of s under θa . 
 
Note that, if a, b ∈ G, and e is the identity element of G, then 

(∗)         θab = θaθb ,  θe = iS (the identity map on S). 
 

Conversely, if G is a group, S is a set, and for every element a in G there is 
defined a map  θa : S → S , in such a way that (*) is satisfied, then in fact each θa 
must be a bijection, and we have a permutation representation θ of G on S . 
(Exercise.) 
 
Examples. 
 
(1) G = R (the group of real numbers under addition), S = C (the complex plane), 
θa(s) = seia . (θa = rotation through angle a about the origin). 
(2) G any group, S = G , θa(s) = as . (G acts on G by left translation.) 
(2') G any group, S = set of all subsets of G , θa(s) = as = {ax|x ∈ s} . 
(3) G any group, S = G , θa(s) = asa-1 . (G acts on G by conjugation.) 
(3') G any group, S = set of all subsets of G , θa(s) = asa-1 = {axa-1|x ∈ s} . 
 
Orbits. Suppose G acts on S , θ : G → A(S) . If s, t ∈ S , it may or may not be 
possible to find an element a of G such that θa(s) = t . Define a relation on S by 
setting 

s ~ t if there exists an element a of G such that θa(s) = t . 
This is an equivalence relation on S . (Exercise.) 
The equivalence class of an element s of S is called its orbit under G , 

OrbG(s) = {θa(s)|a ∈ G} . 
From work on equivalence relations, we have the first part of the 
Proposition. (i) The orbits of elements of S form a partition of S . 
 (ii) If b ∈ G , then θb maps each orbit OrbG(s) into itself, so that G may be 
considered to act on OrbG(s) . (Exercise.) 
 
Examples. (Numbers refer to the list of examples given before.) 
(1) Orbits are circles centered at the origin. 
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(2) There is just one orbit, the whole of G . 
(2') Suppose H is a subgroup of G (so H is an element of S). Then OrbG(H) is the  
set of all left cosets aH of H in G . 
(3), (3') The orbit of an element x or a subset x of G under conjugation is called  
the conjugacy class of x in G , 

clG(x) = {axa-1|a ∈ G} . 
 

Stabilizers. Suppose G acts on S , θ : G → A(S) .  If s ∈ S , its stabilizer in G is 
StabG(s) = {a ∈ G|θa(s) = s} . 

This is a subgroup of G . (Exercise.)  Since the identity map on S is the map 
which fixes every element s of S , it follows that  

Ker θ is the intersection of the stabilizers of all the elements of S . 
 
Examples. 
(1) If s ≠ 0 , StabG(s) consists of all integer multiples of 2π . 
(2) StabG(s) = {e} , for every element s of G . 
(2') If H is a subgroup of G , then StabG(H) = H ; more generally,  
StabG(aH) = aHa-1 . (Exercise.) 
(3) The stabilizer in G of an element x (under conjugation) is called the  
centralizer of x in G , denoted CG(x) , and  

CG(x) = {a ∈ G|ax = xa} . 
(3') The stabilizer in G of a subset X (under conjugation) is called the  
normalizer of X in G , denoted NG(X) , and  

NG(X) = {a ∈ G|aXa-1 = X} . 
 

Remark. Application of part (ii) of the last proposition to example (2') shows 
that, if a group G has a subgroup H of index n , then there is a permutation 
representation of G on the set of n left cosets of H in G , given by left translation, 
i.e., a homomorphism 

φ : G → Sn (the symmetric group of degree n ). 
Since the stabilizer of H is H , the kernel K of φ is a normal subgroup of G 
contained in H , and G/K is isomorphic with a subgroup of Sn . This generalizes 
Cayley's theorem. 
Special case. Suppose G is a finite group, and H is a subgroup of index p in G , 
where p is the smallest prime number dividing the order |G| . Then H is a normal 
subgroup of G . 
 Proof. The remark above gives a normal subgroup K of G contained in H , 
such that G/K is isomorphic with a subgroup of Sp . By Lagrange's theorem, |G/K| 
divides p! However, 

|G/K| = |G|/|K| = (|G|/|H|)(|H|/|K|) = p(|H|/|K|) , 
and so (|H|/|K|) divides (p - 1)! But (|H|/|K|) is a divisor of |G| , so it has no prime 
divisor less than p .  It follows that (|H|/|K|) = 1 , so H = K , so H is normal in G . 
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Homework 
 
1. Suppose that G is a group, S is a set, and for every element a in G there is 
defined a map  θa : S → S , in such a way that  

θab = θaθb , for all a , b ∈ G , 
and θe = iS (the identity map on S).  

Show that each θa must be a bijection. 
 
2. Suppose G acts on S , θ : G → A(S) . Show that the relation defined by  
setting 

s ~ t if there exists an element a of G such that θa(s) = t  
is an equivalence relation on S . 
 
3. Suppose G acts on S , θ : G → A(S) . If b ∈ G , s ∈ S , show that θb maps  
the orbit OrbG(s) into itself. 
 
4. Consider the action of a group G on the set of all its subsets, by left  
translation. Let H be a subgroup of G , a ∈ G . Show that the stabilizer  
StabG(aH) of the left coset aH is aHa-1 . 
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Relation between orbits and stabilizers 
 
Theorem. Suppose G acts on S , θ : G → A(S) .  Let s ∈ S .  There is a 1-1 
correspondence between the orbit OrbG(s) and the set of all left cosets of the 
stabilizer StabG(s) in G , in which θa(s) corresponds to aStabG(s) (a ∈ G). 
 
Proof. Define a map f from OrbG(s) = {θa(s)|a ∈ G} to the set {aStabG(s)|a ∈ G} of 
left cosets, by setting f(θa(s)) = aStabG(s). Since an element of OrbG(s) can be 
given as θa(s) for more than one element a of G , we need to show that f is well-
defined. This means that, if θa(s) = θb(s), then aStabG(s) = bStabG(s) . 
 
So, suppose that θa(s) = θb(s) . Then, θb-1θa(s) = s , so θb-1a(s) = s (since θ is a 
homomorphism). Thus, b-1a ∈ StabG(s) , so aStabG(s) = bStabG(s) . So, f is well-
defined. 
 
Running the argument in reverse shows that f is injective. Since f is clearly 
surjective, this proves the theorem. 
 
Note.  If g ∈ G , then in the action of G on S , g maps θa(s) on θgθa(s) = θga(s) , 
while, in the action of G on the set of left cosets of StabG(s) , g maps aStabG(s) on 
gaStabG(s) , and θga(s) and gaStabG(s) correspond under f .  So the action of G on 
the orbit OrbG(s) is "the same" as the action of G on the set of left cosets of 
StabG(s) in G . 
 
Corollary to Theorem. If a is an element of a group G , the number of elements of 
the conjugacy class clG(a) of a in G is equal to the index [G:CG(a)] in G of the 
centralizer CG(a) . If G is finite, this is a divisor of the order |G| . 
 
Corollary (The class equation) If G is a finite group, then 

|G| = |Z(G)| +∑
a

[G:CG(a)]  , 

where a runs over a set of representatives of the conjugacy classes of noncentral 
elements of G , and Z(G) is the center of G .. 
 
Proof.  Since the conjugacy classes partition G , the number of elements in G is 
the sum of the numbers of elements in the conjugacy classes. From the previous 
result, 

|G| = ∑
a

[G:CG(a)]  , 

where a runs over a set of representatives of all the conjugacy classes of G .  Split 
the sum up into those terms which are 1 and those which are greater than 1. 
Since clG(a) contains just one element, a itself, if and only if a ∈ Z(G) (Exercise), 
the sum of the terms which are 1 is the order |Z(G)| . 
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Example.  If p is a prime number, a group whose order is a power of p is called a 
p-group.  If G is a p-group, not the trivial group {e}, then each term [G:CG(a)] in 
the class equation is a power of p since it divides |G| , and so is divisible by p , if 
a is noncentral. Since |G| is also divisible by p , it follows that |Z(G)| is divisible by 
p . Thus, the center of a nontrivial p-group is also nontrivial.  This fact makes it 
possible to prove many results about p-groups, by induction on the order.  (See 
p.104 of the textbook.) 
 
Sylow's Theorem 
 
If G is a finite group, and m is a divisor of the order |G| , G may not have a 
subgroup of order m , so Lagrange's theorem does not have a full converse.  
However, there is a partial converse. 
 
Theorem  (First Sylow Theorem) If G is a finite group, p a prime number, and pk 

divides |G| , then G has at least one subgroup of order pk . 
 
Proof  The result is true if |G| = 1 . Use induction on |G| ; assume that it is true for 
all groups of order less than |G| . 
The result is also true if k = 0 . Assume k > 0 , so that p divides |G| . 
Case 1. Suppose p divides |Z(G)| .  By Cauchy's theorem applied to the abelian 
group Z(G) , Z(G) has a subgroup H of order p . Then H is a normal subgroup of 
G , and pk-1 divides |G/H| .  By induction hypothesis, G/H has a subgroup of 
order pk-1 . By the correspondence theorem, this has the form K/H , where K is a 
subgroup of G containing H. Then |K| = |K/H| |H| = pk-1p = pk . 
Case 2. Suppose p does not divide |Z(G)| . From the class equation, there exists a 
noncentral element a such that p does not divide [G:CG(a)] . Then |CG(a)| < |G| , 
and also |G| = [G:CG(a)] |CG(a)| shows that pk divides |CG(a)| . By induction 
hypothesis, CG(a) has a subgroup of order pk . 
 
Remarks (1) It can be shown that the number of subgroups of order pk is of the 
form 1 + rp , for some integer r . 
(2) Two subgroups of the same order pk in G are not necessarily isomorphic.   
However, if k is the largest integer such that pk divides |G| , a subgroup of order 
pk is called a Sylow p-subgroup (or p-Sylow subgroup) of G , and it can be shown 
that any two Sylow p-subgroups of G are necessarily conjugate in G , and in 
particular are isomorphic. 
(3) It can be shown that if H is any p-subgroup of G (subgroup of order a power 
of p), then there exists at least one Sylow p-subgroup of G which contains H . 
 
Example Suppose G is a group of order pqb , where p and q are prime numbers, 
and p < q .  Then G has a Sylow q-subgroup H , and the index of H in G is p . 
Since p is the smallest prime divisor of |G| , H is a normal subgroup of G , so G is 
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not a simple group. A famous (among group-theorists) theorem of Burnside 
(1911) shows that a group of order paqb cannot be simple. 
 
Homework  
 
1. Let a be an element of a group G .  Show that the following are equivalent: 
 (1) The conjugacy class clG(a) of a in G consists of just one element. 
 (2) The centralizer CG(a) of a in G is equal to G . 
 (3) a is an element of the center Z(G) of G . 
2. If P is a Sylow p-subgroup of a finite group G and it happens to be a normal  
subgroup of G , show that every p-subgroup H of G must be contained in P .  
(Hint: One way to proceed is to use the natural homomorphism θ of G onto G/P . 
Show that θ must map H to the identity subgroup.) 


