Action of a Group on a Set

Suppose G is a group, S is a set, and A(S) is the group of all permutations on S (bijections of S on itself).

<u>Definition</u>. A homomorphism θ : G \rightarrow A(S) is called a *permutation representation* of G on S, and G is said to *act* on S.

Notation. If $a \in G$, we write θ_a for the image of a under θ , rather than $\theta(a)$, so that θ_a is a map of S to S, and, if $s \in S$, $\theta_a(s)$ is the image of s under θ_a .

Note that, if a, b \in G, and e is the identity element of G, then (*) $\theta_{ab} = \theta_a \theta_b$, $\theta_e = i_S$ (the identity map on S).

Conversely, if G is a group, S is a set, and for every element a in G there is defined a map $\theta_a : S \to S$, in such a way that (*) is satisfied, then in fact each θ_a must be a bijection, and we have a permutation representation θ of G on S. (Exercise.)

Examples.

(1) $G = \mathbf{R}$ (the group of real numbers under addition), $S = \mathbf{C}$ (the complex plane), $\theta_a(s) = se^{ia}$. (θ_a = rotation through angle a about the origin). (2) G any group, S = G, $\theta_a(s) = as$. (G acts on G by *left translation*.) (2') G any group, S = set of all subsets of G, $\theta_a(s) = as = \{ax|x \in s\}$.

(3) G any group, S = G , $\theta_a(s) = asa^{-1}$. (G acts on G by *conjugation*.)

(3') G any group, S = set of all subsets of G , $\theta_a(s) = asa^{-1} = \{axa^{-1} | x \in s\}$.

Orbits. Suppose G acts on S, $\theta:G\to A(S)$. If s, $t\in S$, it may or may not be possible to find an element a of G such that $\theta_a(s)=t$. Define a relation on S by setting

 $s \sim t$ if there exists an element a of G such that $\theta_a(s) = t$. This is an equivalence relation on S. (Exercise.) The equivalence class of an element s of S is called its *orbit* under G,

$$\operatorname{Orb}_{\mathcal{G}}(s) = \{ \theta_a(s) | a \in \mathcal{G} \}$$

From work on equivalence relations, we have the first part of the <u>Proposition</u>. (i) The orbits of elements of S form a partition of S.

(ii) If $b \in G$, then θ_b maps each orbit $Orb_G(s)$ into itself, so that G may be considered to act on $Orb_G(s)$. (Exercise.)

Examples. (Numbers refer to the list of examples given before.)

(1) Orbits are circles centered at the origin.

(2) There is just one orbit, the whole of G.

(2') Suppose H is a subgroup of G (so H is an element of S). Then $Orb_G(H)$ is the set of all left cosets aH of H in G .

(3), (3') The orbit of an element x or a subset x of G under conjugation is called the *conjugacy class* of x in G ,

$$cl_G(x) = \{axa^{-1}|a \in G\}$$
.

Stabilizers. Suppose G acts on S, θ : G \rightarrow A(S). If $s \in S$, its *stabilizer* in G is $Stab_G(s) = \{a \in G|\theta_a(s) = s\}$.

This is a subgroup of G . (Exercise.) Since the identity map on S is the map which fixes every element s of S , it follows that

Ker $\boldsymbol{\theta}$ is the intersection of the stabilizers of all the elements of S .

Examples.

(1) If $s \neq 0$, $Stab_G(s)$ consists of all integer multiples of 2π .

(2) $Stab_G(s) = \{e\}$, for every element s of G.

(2') If H is a subgroup of G , then $Stab_G(H) = H$; more generally,

 $Stab_G(aH) = aHa^{-1}$. (Exercise.)

(3) The stabilizer in G of an element x (under conjugation) is called the *centralizer* of x in G , denoted $C_G(x)$, and

$$C_G(x) = \{a \in G | ax = xa\}.$$

(3') The stabilizer in G of a subset X (under conjugation) is called the normalizer of X in G , denoted $N_G(X)$, and

 $N_{G}(X) = \{a \in G | aXa^{-1} = X\}.$

<u>Remark</u>. Application of part (ii) of the last proposition to example (2') shows that, if a group G has a subgroup H of index n, then there is a permutation representation of G on the set of n left cosets of H in G, given by left translation, i.e., a homomorphism

 ϕ : G \rightarrow S_n (the symmetric group of degree n).

Since the stabilizer of H is H , the kernel K of ϕ is a normal subgroup of G contained in H , and G/K is isomorphic with a subgroup of S_n . This generalizes Cayley's theorem.

<u>Special case</u>. Suppose G is a finite group, and H is a subgroup of index p in G , where p is the smallest prime number dividing the order |G|. Then H is a normal subgroup of G .

Proof. The remark above gives a normal subgroup K of G contained in H , such that G/K is isomorphic with a subgroup of S_p . By Lagrange's theorem, |G/K| divides p! However,

$$\label{eq:GK} \begin{split} |G/K| &= |G|/|K| = (|G|/|H|)(|H|/|K|) = p(|H|/|K|) \ , \\ \text{and so } (|H|/|K|) \ \text{divides } (p-1)! \ \text{But } (|H|/|K|) \ \text{is a divisor of } |G| \ , \ \text{so it has no prime} \\ \text{divisor less than } p \ . \ \text{It follows that } (|H|/|K|) = 1 \ , \ \text{so } H = K \ , \ \text{so } H \ \text{is normal in } G \ . \end{split}$$

<u>Homework</u>

1. Suppose that G is a group, S is a set, and for every element a in G there is defined a map $\theta_a : S \to S$, in such a way that

```
\theta_{ab} = \theta_a \theta_b, for all a, b \in G,
```

```
and \theta_e = i_S (the identity map on S).
```

Show that each θ_a must be a bijection.

2. Suppose G acts on S , θ : G \rightarrow A(S) . Show that the relation defined by setting

 $s \sim t$ if there exists an element a of G such that $\theta_a(s) = t$ is an equivalence relation on S .

3. Suppose G acts on S, θ : G \rightarrow A(S). If $b \in G$, $s \in S$, show that θ_b maps the orbit $Orb_G(s)$ into itself.

4. Consider the action of a group G on the set of all its subsets, by left translation. Let H be a subgroup of G , $a \in G$. Show that the stabilizer $Stab_G(aH)$ of the left coset aH is aHa^{-1} .

<u>Theorem</u>. Suppose G acts on S, θ : G \rightarrow A(S). Let s \in S. There is a 1-1 correspondence between the orbit $Orb_G(s)$ and the set of all left cosets of the stabilizer $Stab_G(s)$ in G, in which $\theta_a(s)$ corresponds to $aStab_G(s)$ ($a \in G$).

<u>Proof</u>. Define a map f from $Orb_G(s) = \{\theta_a(s) | a \in G\}$ to the set $\{aStab_G(s) | a \in G\}$ of left cosets, by setting $f(\theta_a(s)) = aStab_G(s)$. Since an element of $Orb_G(s)$ can be given as $\theta_a(s)$ for more than one element a of G, we need to show that f is well-defined. This means that, if $\theta_a(s) = \theta_b(s)$, then $aStab_G(s) = bStab_G(s)$.

So, suppose that $\theta_a(s) = \theta_b(s)$. Then, $\theta_b^{-1}\theta_a(s) = s$, so $\theta_b^{-1}a(s) = s$ (since θ is a homomorphism). Thus, $b^{-1}a \in \text{Stab}_G(s)$, so $a\text{Stab}_G(s) = b\text{Stab}_G(s)$. So, f is well-defined.

Running the argument in reverse shows that f is injective. Since f is clearly surjective, this proves the theorem.

<u>Note</u>. If $g \in G$, then in the action of G on S, g maps $\theta_a(s)$ on $\theta_g \theta_a(s) = \theta_{ga}(s)$, while, in the action of G on the set of left cosets of $Stab_G(s)$, g maps $aStab_G(s)$ on $gaStab_G(s)$, and $\theta_{ga}(s)$ and $gaStab_G(s)$ correspond under f. So the action of G on the orbit $Orb_G(s)$ is "the same" as the action of G on the set of left cosets of $Stab_G(s)$ in G.

<u>Corollary</u> to Theorem. If a is an element of a group G , the number of elements of the conjugacy class $cl_G(a)$ of a in G is equal to the index $[G:C_G(a)]$ in G of the centralizer $C_G(a)$. If G is finite, this is a divisor of the order |G|.

Corollary (The class equation) If G is a finite group, then $|G| = |Z(G)| + \sum [G:C_G(a)] \ ,$

a

where a runs over a set of representatives of the conjugacy classes of noncentral elements of G , and Z(G) is the center of G ...

<u>Proof</u>. Since the conjugacy classes partition G , the number of elements in G is the sum of the numbers of elements in the conjugacy classes. From the previous result,

 $|G| = \sum_{a} [G:C_G(a)] ,$

where a runs over a set of representatives of all the conjugacy classes of G. Split the sum up into those terms which are 1 and those which are greater than 1. Since $cl_G(a)$ contains just one element, a itself, if and only if $a \in Z(G)$ (Exercise), the sum of the terms which are 1 is the order |Z(G)|.

Example. If p is a prime number, a group whose order is a power of p is called a *p-group.* If G is a p-group, not the trivial group {e}, then each term [G:C_G(a)] in the class equation is a power of p since it divides |G|, and so is divisible by p, if a is noncentral. Since |G| is also divisible by p, it follows that |Z(G)| is divisible by p. Thus, *the center of a nontrivial p-group is also nontrivial.* This fact makes it possible to prove many results about p-groups, by induction on the order. (See p.104 of the textbook.)

Sylow's Theorem

If G is a finite group, and m is a divisor of the order |G|, G may not have a subgroup of order m, so Lagrange's theorem does not have a full converse. However, there is a partial converse.

<u>Theorem</u> (*First Sylow Theorem*) If G is a finite group, p a prime number, and p^k divides |G|, then G has at least one subgroup of order p^k .

<u>Proof</u> The result is true if |G| = 1. Use induction on |G|; assume that it is true for all groups of order less than |G|.

The result is also true if k = 0. Assume k > 0, so that p divides |G|. *Case 1.* Suppose p divides |Z(G)|. By Cauchy's theorem applied to the abelian group Z(G), Z(G) has a subgroup H of order p. Then H is a normal subgroup of G, and p^{k-1} divides |G/H|. By induction hypothesis, G/H has a subgroup of order p^{k-1} . By the correspondence theorem, this has the form K/H, where K is a subgroup of G containing H. Then $|K| = |K/H| |H| = p^{k-1}p = p^k$. *Case 2.* Suppose p does not divide |Z(G)|. From the class equation, there exists a noncentral element a such that p does not divide $[G:C_G(a)]$. Then $|C_G(a)| < |G|$, and also $|G| = [G:C_G(a)] |C_G(a)|$ shows that p^k divides $|C_G(a)|$. By induction hypothesis, $C_G(a)$ has a subgroup of order p^k .

<u>Remarks</u> (1) It can be shown that the number of subgroups of order p^k is of the form 1 + rp, for some integer r.

(2) Two subgroups of the same order p^k in G are not necessarily isomorphic. However, if k is the largest integer such that p^k divides |G|, a subgroup of order p^k is called a *Sylow p-subgroup* (or p-Sylow subgroup) of G, and it can be shown that any two Sylow p-subgroups of G are necessarily conjugate in G, and in particular are isomorphic.

(3) It can be shown that if H is any p-subgroup of G (subgroup of order a power of p), then there exists at least one Sylow p-subgroup of G which contains H.

<u>Example</u> Suppose G is a group of order pq^b , where p and q are prime numbers, and p < q. Then G has a Sylow q-subgroup H, and the index of H in G is p. Since p is the smallest prime divisor of |G|, H is a normal subgroup of G, so G is

not a simple group. A famous (among group-theorists) theorem of Burnside (1911) shows that a group of order p^aq^b cannot be simple.

Homework

- **1**. Let a be an element of a group G . Show that the following are equivalent:
 - (1) The conjugacy class $cl_G(a)$ of a in G consists of just one element.
 - (2) The centralizer $C_G(a)$ of a in G is equal to G .
 - (3) a is an element of the center Z(G) of G .

2. If P is a Sylow p-subgroup of a finite group G and it happens to be a normal subgroup of G , show that every p-subgroup H of G must be contained in P . (Hint: One way to proceed is to use the natural homomorphism θ of G onto G/P . Show that θ must map H to the identity subgroup.)