MATHEMATICS 361
Test 2
October 11, 2000
Name \qquad
4 questions

1 (20 points)
(a) Let H be a subgroup of a group G. Define the index of H in G, and give the relation of this to the orders of H and G. (Proof not needed.)
(b) A certain finite group G is known to have a subgroup of order 18 and another subgroup of order 60 . What is the minimum possible order for G ? (Give a reason for your answer.)
(c) If G is an infinite group, with a finite subgroup H, what can you say about the index of H in G ? (Proof not needed.)
2. (30 points)

Let H be a subgroup of a group G, and a a fixed element of G.
(a) Prove that $H a \subseteq a H$ if, and only if, $a^{-1} h a \in H$, for all h in H.
(b) Define what it means to say that H is a normal subgroup of G.
(c) If H is a normal subgroup of G, explain what the quotient group G / H is (i.e., explain what its elements are and how they are multiplied).

3.(20 points)

Let Z_{20} be the set of the integers $\bmod 20$, and U_{20} the multiplicative group contained in Z_{20}, consisting of the congruence classes $[n]$ modulo 20 with $\operatorname{gcd}(n, 20)=1$.
(a) List all the elements of U_{20}.
(b) List all the elements of the cyclic subgroup H of U_{20} generated by the element [7] .
(c) Find all the distinct left cosets of H in U_{20}.
4. (30 points)

Let G be an abelian group with identity element e, and let n be a fixed positive integer.
(a) Show that the map $\theta: G \rightarrow G$ given by

$$
\theta(x)=x^{n}
$$

is a homomorphism, being careful to point out where the assumption that G is abelian is used.
(b) If

$$
\begin{gathered}
G^{(n)}=\left\{x^{n} \mid x \in G\right\}, \\
G_{(n)}=\left\{x \in G \mid x^{n}=e\right\},
\end{gathered}
$$

Show that $G^{(n)}$ and $G_{(n)}$ are subgroups of G, and that

$$
G / G_{(n)} \cong G^{(n)} .
$$

(c) If G is the multiplicative group of all nonzero complex numbers, what is the order of $G_{(n)}$? What is $G^{(n)}$? (Proof not needed.)

