MATHEMATICS 361 Test 2		Name		
October 11, 2000		4 questions		
1 (20 points)				
(a)	Let <i>H</i> be a subgroup of a group <i>G</i> . I give the relation of this to the order <i>needed</i> .)	· ·		
(b)		nite group <i>G</i> is known to have a subgroup of order 18 r subgroup of order 60. What is the minimum possible ? (<i>Give a reason for your answer.</i>)		

If G is an infinite group, with a finite subgroup H, what can you say

about the index of *H* in *G*? (*Proof not needed.*)

(c)

2. (30 points)

Let H be a subgroup of a group G, and a a fixed element of G.

(a) Prove that $Ha \subseteq aH$ if, and only if, $a^{-1}ha \in H$, for all h in H.

(b) Define what it means to say that H is a normal subgroup of G.

(c) If H is a normal subgroup of G, explain what the quotient group G/H is (i.e., explain what its elements are and how they are multiplied).

^	α	•
1	70	points)
\mathcal{L}	(- 0	pomis

Let Z_{20} be the set of the integers mod 20, and U_{20} the multiplicative group contained in Z_{20} , consisting of the congruence classes [n] modulo 20 with gcd(n,20) = 1.

(a) List all the elements of U_{20} .

(b) List all the elements of the cyclic subgroup H of U_{20} generated by the element [7].

(c) Find all the distinct left cosets of H in U_{20} .

4. (30 points)

Let G be an abelian group with identity element e , and let n be a fixed positive integer.

(a) Show that the map $\theta: G \to G$ given by

$$\theta(X) = X^n$$

is a homomorphism, being careful to point out where the assumption that G is abelian is used.

(b) If

$$G^{(n)} = \{x^n | x \in G\},$$

$$G_{(n)} = \{x \in G | x^n = e\},$$

Show that $G^{(n)}$ and $G_{(n)}$ are subgroups of G, and that

$$G/G_{(n)} \cong G^{(n)}$$
.

(c) If G is the multiplicative group of all nonzero complex numbers, what is the order of $G_{(n)}$? What is $G^{(n)}$? (*Proof not needed.*)