MAT	HEM	ATICS	361
T.T. F T	T T T T T T T T	11100	, , ,

Name _____

Test 3

November 15, 2000

4 questions

1 (20 points)

- (a) Give a careful definition of the (external) direct product $G_1 \times G_2$ of two groups G_1 , G_2 . [You do not need to verify that it satisfies the group axioms.
- (b) If H, K are normal subgroups of a group G, and

$$\theta: G \to G/H \times G/K$$

is the mapping given by $\theta(x) = (xH,xK)$,

$$\theta(X) = (XH, XK) ,$$

show that θ is a homomorphism, and prove that its kernel is $H \cap K$.

(c) If H, K are normal subgroups of a group G, show that $H \cap K$ is a normal subgroup of G , and that $G/(H \cap K)$ is isomorphic to a subgroup of $G/H \times G/K$.

2 (25 points)

(a) Define what is meant by the cycle $(a_1 \ a_2 \dots a_k)$ in the symmetric group S_n .

(b) Explain what is meant by saying that an element σ of S_n is an even permutation or an odd permutation. [No proof needed.]

(c) Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 7 & 1 & 2 & 6 & 8 & 3 \end{pmatrix}$ as a product of disjoint cycles, and determine whether it is even or odd.

3 (25 points)

Let ${\it H}$ be the division ring of real quaternions, with the usual elements i, j, k, satisfying the relations

$$i^2 = j^2 = k^2 = -1$$
, $ij = k = -ji$, etc.

Let α_0 , α_1 , α_2 , α_3 be real numbers.

(a) Compute $(\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k)^2$.

(b) Show that $(\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k)^2 = -1$ if, and only if,

$$\alpha_0=0$$
 , and $\alpha_1{}^2+\alpha_2{}^2+\alpha_3{}^2=1$.

(c) Deduce that the equation $x^2 = -1$ has infinitely many solutions in H.

4 (30 points)

Let Let R be the ring $M_2(\mathbf{Z})$ of all 2×2 matrices over \mathbf{Z} , with the usual matrix addition and multiplication. Let S, T be the subsets given by

$$S = \left\{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \mid a, b, c \in \mathbf{Z} \right\}, \quad T = \left\{ \begin{pmatrix} 0 & c \\ 0 & b \end{pmatrix} \mid b, c \in \mathbf{Z} \right\},$$

and let $\theta: S \rightarrow Z$ be the mapping given by

$$\theta \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} = a.$$

Show that

(a) S is a subring of R (containing the identity element).

(b) θ is a ring homomorphism of S onto Z.

(c) T is a two-sided ideal of S, and S/T is isomorphic to Z.