MATHEMATICS 361
Test 3
November 15, 2000

Name \qquad

4 questions

1 (20 points)
(a) Give a careful definition of the (external) direct product $G_{1} \times G_{2}$ of two groups G_{1}, G_{2}. [You do not need to verify that it satisfies the group axioms.]
(b) If H, K are normal subgroups of a group G, and

$$
\theta: G \rightarrow G / H \times G / K
$$

is the mapping given by

$$
\theta(x)=(x H, x K),
$$

show that θ is a homomorphism, and prove that its kernel is $H \cap K$.
(c) If H, K are normal subgroups of a group G, show that $H \cap K$ is a normal subgroup of G, and that $G /(H \cap K)$ is isomorphic to a subgroup of $G / H \times G / K$.

2 (25 points)
(a) Define what is meant by the cycle $\left(a_{1} a_{2} \ldots a_{\mathrm{k}}\right)$ in the symmetric group S_{n}.
(b) Explain what is meant by saying that an element σ of S_{n} is an even permutation or an odd permutation. [No proof needed.]
(c) Express the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 7 & 1 & 2 & 6 & 8 & 3\end{array}\right)$ as a product of disjoint cycles, and determine whether it is even or odd.

3 (25 points)

Let H be the division ring of real quaternions, with the usual elements i, j, k, satisfying the relations

$$
i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, \text { etc. }
$$

Let $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ be real numbers.
(a) Compute $\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right)^{2}$.
(b) Show that $\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right)^{2}=-1$ if, and only if,

$$
\alpha_{0}=0, \text { and } \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=1 .
$$

(c) Deduce that the equation $x^{2}=-1$ has infinitely many solutions in H.

4 (30 points)
Let Let R be the ring $M_{2}(Z)$ of all 2×2 matrices over Z, with the usual matrix addition and multiplication. Let S, T be the subsets given by

$$
S=\left\{\left.\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right) \right\rvert\, a, b, c \in Z\right\}, \quad T=\left\{\left.\left(\begin{array}{ll}
0 & c \\
0 & b
\end{array}\right) \right\rvert\, b, c \in Z\right\},
$$

and let $\theta: S \rightarrow Z$ be the mapping given by

$$
\theta\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)=a .
$$

Show that
(a) S is a subring of R (containing the identity element).
(b) θ is a ring homomorphism of S onto Z.
(c) T is a two-sided ideal of S, and S / T is isomorphic to Z.

