Math 362 Exam 1; Mon, Feb24, 1997 12:50-1:40pm

Instructions. Answer questions 1-3. Use your time wisely; the questions are not of equal value. You must show all necessary working to receive full points for a problem. If you are unable to do one part of a problem, you may still use the result of that part in your answer to later parts of the exam. Calculators may be used if desired. 1. (30 points)
(a) Let $L: K$ be a field extension. Explain carefully what is meant by the degree $[L: K]$ of the extension. If M is an intermediate field, what is the relation between $[L: M],[M: K]$ and $[L: K]$?
(b) Explain what is meant by saying that a field extension $L: K$ is (i) simple, (ii) finite or (iii) algebraic.
(c) Show that $\mathbf{Q}(\sqrt{2}, \sqrt{7})$ is a simple extension of \mathbf{Q}.
(d) Let $F=K(t)$ be the field of rational functions in an indeterminate t over a field K, and $\alpha=t^{3}+(2+t)^{-1} \in F$. Set $L=K(\alpha)$ (a subfield of F). Show that t is algebraic over L.

2. (25 points)

(a) Let K be a field, and $f \in K[t]$ be an irreducible polynomial over K. Explain how to construct a simple extension $L=K(\alpha)$ of K in which f has a zero α. How is irreducibility used in the proof that your L is a field? What is the relation between the degree of the polynomial f and the extension degree $[L: K]$?
(b) Taking $K=\mathbf{Z}_{3}$ in (a), find a suitable polynomial f so the resulting field L contains 9 elements. Express each of α^{3} and $(\alpha+1)^{-1}$ in the form $c_{0}+c_{1} \alpha$ with the $c_{i} \in \mathbf{Z}_{3}$. Are these expressions unique?
3. (45 points) Let $\alpha=\sqrt[5]{2} \in \mathbf{R}$ and $\omega=e^{2 \pi i / 5} \in \mathbf{C}$. Define polynomials f and g in $\mathbf{Q}[X]$ by $g=X^{4}+X^{3}+X^{2}+X+1$ and $f=X^{5}-2$.
(a) State Eisenstein's criterion and use it show $g(X+1)$ (and hence g) is irreducible over \mathbf{Q}. Prove that that $g=\min (\omega, \mathbf{Q}, X)$ and conclude that $[\mathbf{Q}(\omega): \mathbf{Q}]=4$.
(b)Show similarly that $f=\min (\alpha, \mathbf{Q}, X)$ and compute $[\mathbf{Q}(\alpha): \mathbf{Q}]$. Conclude that $[\mathbf{Q}(\alpha, \omega)$: $\mathbf{Q}(\omega)] \leq 5$. (Hint; $\min (\alpha, \mathbf{Q}(\omega), X)$ divides f in $\mathbf{Q}(\omega)[X]$).
(c) Prove that $[\mathbf{Q}(\alpha, \omega): \mathbf{Q}]=20$. (Hint; show the degree is divisible by 4 and by 5 , and is less than or equal to 20.)
(d) Explain what is meant by an isomorphism from a field extension $K: M$ to a field extension $L: N$. Show that any automorphism of $\mathbf{Q}(\omega): \mathbf{Q}$ (i.e. an isomorphism of this extension with itself) must map ω to a root $\omega^{j}, 1 \leq j \leq 4$ of g in $\mathbf{Q}(\omega)$.
(e) Suppose that $K(\beta): K$ and $L(\gamma): L$ are simple algebraic extensions. Give sufficient conditions on the minimum polynomials of α and β under which an isomorphism of fields $\theta: K \rightarrow L$ can be extended to an isomorphism of the two extensions. Use your condition to show that for any integer j with $1 \leq j \leq 4$ there is an automorphism of $\mathbf{Q}(\omega): \mathbf{Q}$ mapping ω to ω^{j}.

