Final Exam for Math 362, Honors Algebra IV

May 4, 1998, 4:15-6:15pm.

1. (10 pts) Write down an irreducible polynomial which is not normal. Explain why your example has the stated properties.
(10 pts) Is $[\mathbb{C}: \mathbb{R}]$ a Galois extension? Give a detailed answer.
2. (10 pts) Let

$$
H:=\operatorname{rowsp}_{\mathbb{Z}}\left(\begin{array}{ccc}
2 & 0 & 4 \\
0 & 2 & 0 \\
4 & 0 & 10
\end{array}\right)
$$

Compute the invariant factor decomposition of the abelian group \mathbb{Z}^{3} / H.
(10 pts) Count the number of non-isomorphic abelian groups of order 720 .
3. (10 pts) Show that $x^{3}-t \in \mathbb{Z}_{3}(t)[x]$ is an irreducible and inseparable polynomial.
(10 pts) Write down a nontrivial field automorphism $G F(1024) \longrightarrow G F(1024)$.
4. (10 pts) Find the number of all $[5,3]$ linear codes defined over \mathbb{Z}_{2}. Alternatively count the number of subspaces $V \subset\left(\mathbb{Z}_{2}\right)^{5}$ with $\operatorname{dim} V=3$.
(10 pts) Give an example of a group of order 60 which is not solvable (=soluble).
5. (20 pts) Prove in detail that $G F\left(2^{30}\right) \supset G F(2)$ is a simple extension.
6. (20 pts) Prove that $\mathbb{Q}(\sqrt{5}+\sqrt{7}) \supset \mathbb{Q}$ is a Galois extension. Then compute the Galois group $\Gamma[\mathbb{Q}(\sqrt{5}+\sqrt{7}): \mathbb{Q}]$ and work out the Galois correspondence indicating on one side the subgroups of Γ and on the other side the subfields of $\mathbb{Q}(\sqrt{5}+\sqrt{7})$.
7. a) (10 pts) Describe in detail the splitting field $\mathbb{F} \subset \mathbb{C}$ of the polynomial $x^{8}-1 \in \mathbb{Q}[x]$.
b) (10pts) Compute the Galois group $\Gamma[\mathbb{F}: \mathbb{Q}]$. What is the degree $[\mathbb{F}: \mathbb{Q}]$?
c) (10pts) Work out the Galois correspondence indicating on one side the subgroups of $\Gamma[\mathbb{F}: \mathbb{Q}]$ and on the other side the subfields of \mathbb{F}.

