## Math 362 Exam 1; Thursday Feb 25,1999 12:30-1:45pm

Instructions Answer questions 1-3. Use your time wisely; the questions are not of equal value. You must show all necessary working to receive full points for a problem. If you are unable to do one part of a problem, you may still use the result of that part in your answer to other parts of the exam. 1. (25 points)
(a) Let $L: K$ be a field extension. Explain what is meant by the degree $[L: K]$ of the extension. If $M$ is an intermediate field, what is the relationship between $[L: M],[M: K]$ and $[L: K]$ ?
(b) Decide which of the field extensions (i) $\mathbf{C}: \mathbf{R}$ and (ii) $\mathbf{R}: \mathbf{Q}$ are (I) simple, (II) finite or (III) algebraic.
2. (25 points)(a) Let $K$ be a field, and $f \in K[t]$ be an irreducible polynomial over $K$. Explain how to construct a simple extension $L=K(\alpha)$ of $K$ in which $f$ has a zero $\alpha$. What is the relationship between the degree of the polynomial $f$ and the degree of the extension $[L: K]$ ?
(b) Take $K=\mathbf{Z}_{2}$ and $f=t^{3}+t+1$ in (a). Explain why the elements $1, \alpha, \alpha^{2}$ form a basis of $L$ over $K$. Express each of $\alpha^{5}$ and $(\alpha+1)^{-1}$ as a $K$-linear combination of these basis elements.
3. (50 points) Consider the field extension $\mathbf{Q}(\alpha, \omega)$ : $\mathbf{Q}$ where $\alpha=\sqrt[3]{2}$ and $\omega=e^{2 \pi i / 3}$.
(a) Show that $f=\min (\omega, \mathbf{Q}, X)=X^{2}+X+1$ and $g=\min (\alpha, \mathbf{Q}, X)=X^{3}-2$. Show that the roots of $f$ in the complex numbers are $\omega^{j}, 1 \leq j \leq 2$ and those of $g$ are $\alpha \omega^{i}, 0 \leq i \leq 2$.
(b) Show that $[\mathbf{Q}(\alpha, \omega): \mathbf{Q}]=6$ (Hint: use (a) to show that the degree is divisible by 2 and by 3 and is less than or equal to 6 ).
(c) Suppose that $K(\beta): K$ and $L(\gamma): L$ are simple algebraic extensions, and $\theta: K \rightarrow L$ is a field isomorphism. Give the necessary and sufficient condition relating $\theta$ and the minimum polynomials of $\beta$ and $\gamma$ so that there is an isomorphism of the extensions $K(\beta): K$ with $L(\gamma): L$ compatible with $\theta$ and mapping $\beta$ to $\gamma$.
(d) Use (c) to show that the Galois group of $\mathbf{Q}(\alpha, \omega)$ : $\mathbf{Q}$ consists of six elements $\sigma_{i, j}(0 \leq i \leq 2$, $1 \leq j \leq 2)$ with $\sigma_{i, j}(\alpha)=\alpha \omega^{i}$ and $\sigma_{i, j}(\omega)=\omega^{j}$.
(e) Show the Galois group in (d) is not abelian. Can you identify which familiar group with 6 elements is isomorphic to the Galois group?

