Math 362 Exam 2: Tuesday Mar 30,1999; 12:30-1:45pm

Instructions Answer questions 1-2. You must show all necessary working to receive full points for a problem. If you are unable to do one part of a problem, you may still use the result of that part in your answer to other parts of the exam. 1. (50 points) Let $L: K$ be a finite field extension.
(a) Give a careful definition of the Galois group $G=\Gamma(L: K)$.(b) For an intermediate field M, how is the corresponding subgroup M^{*} of the Galois group defined? Also define the intermediate field H^{\dagger} corresponding to a subgroup H of G. Prove carefully that $H \subseteq\left(H^{\dagger}\right)^{*}$.(c) Explain carefully what is meant by saying that the extension $L: K$ is normal and separable. Give an example of a finite extension which is not normal.(d) Under what assumptions on the extension $L: K$ will the Galois correspondence be bijective. Assuming that it is bijective, show that if M is an intermediate field and $\tau \in G$ then $(\tau(M))^{*}=\tau M^{*} \tau^{-1}$. (e) Assume the Galois correspondence is bijective. Show that if M and N are intermediate fields such that $M \cap N=K$, then $M^{*} \cup N^{*}$ generates the group G.
2. (50 points) Let ω denote the complex number $\omega=e^{\pi i / 4}=\frac{1}{\sqrt{2}}(1+i)$ where $i^{2}=-1$.(a) Show that $\operatorname{Min}(\omega, \mathbf{Q}, X)=f(X)$ where $f(X)=X^{4}+1$. (Hint: show f is irreducible over \mathbf{Q} by considering $f(X+1))$. What is the degree $[\mathbf{Q}(\omega): \mathbf{Q}]$? (b) Show that the roots of f in \mathbf{C} are ω^{j} for $j=1,3,5,7$. Conclude that $\mathbf{Q}(\omega)$ is a splitting field for f over \mathbf{Q}. Is $\mathbf{Q}(\omega)$: \mathbf{Q} a normal extension? Is it a separable extension? Is the Galois correspondence bijective for this extension? (c) Let $G=\Gamma(\mathbf{Q}(\omega): \mathbf{Q})$ be the Galois group. Show that G has four elements and conclude $G=\left\{\tau_{1}, \tau_{3}, \tau_{5}, \tau_{7}\right\}$ where $\tau_{j}(\omega)=\omega^{j}$ for each $j=1,3,5,7$.
(d) Show that $\tau_{j}^{2}=\tau_{1}$ for all j and conclude that G is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
(e) Draw diagrams of all the subgroups of G and the corresponding intermediate fields of $\mathbf{Q}(\omega)$: \mathbf{Q} illustrating the Galois correspondence. (As a check on your answer, you should find five subgroups including G and the trivial subgroup.)

