MATHEMATICS 362
Final examination
May 7, 2001

Name \qquad
6 questions

In questions 2 and $3, \mathbb{Q}$ denotes the field of rational numbers.

1. (30 points)
[No proofs are required in this question.]
Let K, L, M be fields such that $K \subseteq L \subseteq M$. Suppose α, β are elements such that $L=K(\alpha)$, $M=L(\beta)$. Also suppose $[L: K]=m,[M: L]=n$.
(a) Explain what is meant by the statement $L=K(\alpha)$.
(b) Explain what is meant by the equation $[L: K]=m$.
(c) Define the minimal polynomial of α over K, and give its relation to $[L: K]$.
(d) Give a basis of L over K.
(e) Give a basis of M over K.
2. (28 points)
(a) State carefully a theorem connecting derivatives with multiple roots of polynomials. [No proof needed.]
(b) Which of the following polynomials in $\mathbb{Q}[t]$ have a multiple root (in some extension field of $\mathbb{Q})$? Find the multiple roots in the cases where they exist.
(i) $t^{3}-3 t-2$.
(ii) $t^{6}-3 t^{2}-2$
(iii) $t^{17}+6 t^{9}+200 t^{3}+18 t-10$
(Give reasons for your answers.)
3. (12 points)
(a) Define the notion of a splitting field for a polynomial $f(t)$ over a field K.
(b) Give a polynomial whose splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. [No proof needed.]

4. (16 points)

[In this question, "constructible" means "constructible by straightedge and compass, starting with the points $(0,0)$ and (1,0)"]
Some of the points on the cubic curve $y=x^{3}$ are constructible, e.g. $(1,1)$, but some are not, e.g. $(\sqrt[3]{2}, 2)$. Determine whether or not the intersections of the curve with the ellipse $2 x^{2}+y^{2}=6$ are constructible.
5. (32 points)
[No proofs are required in this question.]
Let K be a field of characteristic 0 .
(a) Explain what is meant by saying an extension field L of K is a radical extension of K.
(b) Define the Galois group of a polynomial f in $K[t]$.
(c) Explain what is meant by saying that a polynomial f in $K[t]$ is solvable by radicals.
(d) Explain what is meant by saying that a group G is solvable.
(e) Carefully state the theorem giving the relationship between solvable groups and solvability of polynomials by radicals.
6. (32 points)

Let $L: K$ be a field extension, with Galois group $G=\Gamma(L: K)$.
(a) If M is an intermediate field, define the subgroup M^{*} of G corresponding to M in the Galois correspondence. [You don't have to show it's actually a subgroup.]
(b) If M_{1} and M_{2} are intermediate fields, and $M_{1} \subseteq M_{2}$, state and prove the relationship between M_{1}^{*} and M_{2}^{*}.
(c) If M is an intermediate field, and N is the fixed field of M^{*} in L, show that $M \subseteq N$.
(d) Give a condition on the extension $L: K$ under which $M=N$ holds in (c), for every intermediate field M. [No proof needed.]
(e) If $\alpha_{1}, \alpha_{2} \in L, M_{1}=K\left(\alpha_{1}\right), M_{2}=K\left(\alpha_{2}\right), M=K\left(\alpha_{1}, \alpha_{2}\right)$, show that $M^{*}=M_{1}^{*} \cap M_{2}^{*}$.

