MATHEMATICS 362 Final examination May 7, 2001

Name _____

6 questions

In questions 2 and 3, \mathbb{Q} denotes the field of rational numbers.

1. (30 points)

[No proofs are required in this question.]

Let K, L, M be fields such that $K \subseteq L \subseteq M$. Suppose α, β are elements such that $L = K(\alpha)$, $M = L(\beta)$. Also suppose [L:K] = m, [M:L] = n.

(a) Explain what is meant by the statement $L = K(\alpha)$.

(b) Explain what is meant by the equation [L:K] = m.

(c) Define the minimal polynomial of α over K, and give its relation to [L:K].

(d) Give a basis of L over K.

(e) Give a basis of M over K.

2. (28 points)

(a) State carefully a theorem connecting derivatives with multiple roots of polynomials. [No proof needed.]

(b) Which of the following polynomials in $\mathbb{Q}[t]$ have a multiple root (in some extension field of \mathbb{Q})? Find the multiple roots in the cases where they exist.

(i) $t^3 - 3t - 2$. (ii) $t^6 - 3t^2 - 2$ (iii) $t^{17} + 6t^9 + 200t^3 + 18t - 10$

(Give reasons for your answers.)

- **3**. (12 points)
- (a) Define the notion of a splitting field for a polynomial f(t) over a field K.

(b) Give a polynomial whose splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. [No proof needed.]

4. (16 points)

[In this question, "constructible" means "constructible by straightedge and compass, starting with the points (0,0) and (1,0)"]

Some of the points on the cubic curve $y = x^3$ are constructible, e.g. (1,1), but some are not, e.g. $(\sqrt[3]{2}, 2)$. Determine whether or not the intersections of the curve with the ellipse $2x^2 + y^2 = 6$ are constructible.

5. (32 points)

[No proofs are required in this question.]

Let K be a field of characteristic 0.

(a) Explain what is meant by saying an extension field L of K is a radical extension of K.

(b) Define the Galois group of a polynomial f in K[t].

(c) Explain what is meant by saying that a polynomial f in K[t] is solvable by radicals.

(d) Explain what is meant by saying that a group G is solvable.

(e) Carefully state the theorem giving the relationship between solvable groups and solvability of polynomials by radicals.

6. (32 points)

Let L: K be a field extension, with Galois group $G = \Gamma(L:K)$.

(a) If M is an intermediate field, define the subgroup M^* of G corresponding to M in the Galois correspondence. [You don't have to show it's actually a subgroup.]

(b) If M_1 and M_2 are intermediate fields, and $M_1 \subseteq M_2$, state and prove the relationship between M_1^* and M_2^* .

(c) If M is an intermediate field, and N is the fixed field of M^* in L, show that $M \subseteq N$.

(d) Give a condition on the extension L : K under which M = N holds in (c), for every intermediate field M. [No proof needed.]

(e) If $\alpha_1, \alpha_2 \in L$, $M_1 = K(\alpha_1)$, $M_2 = K(\alpha_2)$, $M = K(\alpha_1, \alpha_2)$, show that $M^* = M_1^* \cap M_2^*$.