MATHEMATICS 362
Test 1
February 7, 2001
Name \qquad
4 questions

In questions 2, 3, 4, \mathbb{Q} denotes the field of rational numbers.

1. (25 points)
(a) Define what it means for a field extension $L: K$ to be a finite extension, and define the degree $[L: K]$.
(b) Let K, L, M be fields, with $K \subseteq L \subseteq M$, and suppose $M: L$ and $L: K$ are finite extensions. Explain carefully how to obtain a basis B of M over K, from a basis of M over L and a basis of L over K. (Proof that B is actually a basis is not required.)
(c) Suppose K, L, M, N are fields, with $K \subseteq L \subseteq M \subseteq N$, and suppose that $[M: K]=15$, $[N: L]=6$. Show that $[N: K]$ must be either 30 or 90 .
2. (25 points) Let $L: K$ be a field extension, $\alpha \in L$.
(a) Explain what is meant by $K(\alpha)$.
(b) If f is an irreducible polynomial of degree n in $K[t]$, and α is a root of f, write down a basis for $K(\alpha)$ over K. (Proof not needed.)
(c) Show that the polynomial $g=t^{2}+t+1$ is irreducible over the field \mathbb{Q}.
(d) Suppose the complex number α is a root of the polynomial g of (c) above. If $a, b, c, d \in \mathbb{Q}$, express the product $(a+b \alpha)(c+d \alpha)$ in the form $e+f \alpha$, where $e, f \in \mathbb{Q}$.
3. (25 points)
(a) If α, β are both algebraic over a field K, give a condition involving polynomials under which there exists a K-isomorphism (i.e., an isomorphism leaving every element of K fixed)

$$
\phi: K(\alpha) \rightarrow K(\beta)
$$

such that $\phi(\alpha)=\beta$. (No justification needed.)

For the next two parts of the question, let α be as in Question 2(d), i.e., α is a complex root of the polynomial $g=t^{2}+t+1$.
(b) Show that there exists a \mathbb{Q}-automorphism

$$
\phi: \mathbb{Q}(\alpha) \rightarrow \mathbb{Q}(\alpha),
$$

such that $\phi(\alpha)=-1-\alpha$.
(c) If $\gamma=a+b \alpha$, where $a, b \in \mathbb{Q}$, compute the product $\gamma \cdot \phi(\gamma)$, and find a formula for $(a+b \alpha)^{-1}$.
4. (25 points)
(a) Give a careful statement (without proof) of a theorem connecting field extensions with geometric constructibility.
(b) It is easy to bisect angles by means of straightedge and compass. Given a number θ, let $\alpha=\cos \theta, \beta=\cos 2 \theta$. By using a suitable trigonometric identity, show that

$$
\begin{gathered}
\mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha), \\
{[\mathbb{Q}(\alpha): \mathbb{Q}(\beta)] \leq 2 .}
\end{gathered}
$$

(c) If $\alpha_{n}=\cos \left(\pi / 2^{n}\right)$, where n is a positive integer, show that

$$
\left[\mathbb{Q}\left(\alpha_{n}\right): \mathbb{Q}\right]=2^{m},
$$

where $m<n$.

