

October 2, 1996
Instructor: Bei Hu

Name:

For a proof (Problems 3-7), please quote the theorem you use for each step.

1. (32 points). True or False. (No proof or counter example needed).
(a). The countable union of countable sets is a countable set.
(b). The complex field is not an ordered field.
(c). If $\left\{G_{n}\right\}$ is open, then $\bigcap_{n=1}^{\infty} G_{n}$ is open.
(d). If E is a nonempty bounded set in Q (the rationals), then $\sup E$ exists and is also a rational.
(e). If G is open, then G is not closed.
(f). The product of two irrationals is always irrational.
(g). If a is rational, b is irrational, then $a+9 b$ is always irrational.
(h). Let X be a metric space with a distance function $d(p, q)$, then any neighborhood must contain infinitely many points.
2. (20 points).
(a). State PRECISELY the definition of a compact set.
(b). State PRECISELY the definition of i) a metric, and ii) a metric space.
(c). State PRECISELY the definition for a limit point for a set E.
(d). State PRECISELY the definition for a perfect set.
3. (10 points). If x and y are complex numbers, prove that $||x|-|y|| \leq|x-y|$.
4. (10 points).
(i). Do E and \bar{E} always have the same interiors? Prove or give a counter example.
(ii). Do E and E° always have the same closure? Prove or give a counter example.
5. (10 points). Suppose that X is a metric space with d. Suppose that $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} x_{n}=p
$$

(We say $\lim _{n \rightarrow \infty} x_{n}=p$ if for any neighborhood N of p, there is a $N>0$ such that $x_{n} \in N$ for all $n>N$.)

Let

$$
E=\left\{x_{n}\right\}_{n=1}^{\infty} \cup\{p\} .
$$

(i) Is E a closed set? Prove or give a counter example.
(ii) Is E a compact set? Prove or give a counter example.
6. (8 points). Please explain:
(a) We know that the interval $(0,1)$ of the real line is not a compact set. However, here is a "proof".

Proof: We know that $[0,1]$ is a closed, compact set. $(0,1)$ is a subset of $[0,1]$. Therefore by Theorem, the set $(0,1)$, being a subset of a compact set, is also a compact set.

What is wrong with this proof?
(b) We know that the set of real numbers in $(0,1)$ is not countable. However, here is a "proof".

Proof: We write each number as $0 . q_{1} q_{2} q_{3} \cdots$. Each q_{j} takes the value $0,1,2,3,4,5,6,7,8$ or 9 . Thus q_{j} has 10 possible values. Now if we let q_{j} to be all these possible values, all real numbers in $(0,1)$ are taken care of. There are only countably number of digits. Therefore, the set $(0,1)$, as a countable union of finite sets, is countable.

What is wrong with this proof?
7. (10 points). Let $J=\{1,2,3, \cdots\}$. Let \mathcal{E} be the set of all subsets of J. Prove that \mathcal{E} is uncountable.
(The elements of \mathcal{E} are subsets of J, such as: $\{1,3,8,9,99\},\{1,3,5,7,9, \cdots\}, \cdots$)

