
1. Do each of the following (4 points each).

(a) Define cauchy sequence.

A sequence {xn}n∈ in a metric space X is said to be Cauchy if for every ε > 0, there exists
N ∈ such that d(xn, xm) < ε whenever n,m ≥ N .

(b) Define convergent series.

A series
∑∞

n=0 an is said to be convergent if the corresponding sequence {sn}n∈ of partial
sums

sn = a1 + . . . + an

converges.

(c) State the root test.

Let
∑∞

n=0 an be a series of non-negative real numbers. Let L = lim sup |an|1/n. Then

• if L > 1, the series diverges;

• if L < 1, the series converges.

(d) Define compact set.

A set E ⊂ X in a metric space X is said to be compact if for every open cover U of E, there
exist finitely many elements U1, . . . , Un ∈ U such that E ⊂ U1 ∪ . . . ∪ Un.

(e) Define upper limit of a sequence.

Let {an} be a sequence and E be the set of all limits of convergent subsequences of {an}.
Then lim sup an = sup E.
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2. Five of the following ten assertions are false. Identify them and give counterexamples on the
following page. Note that you do not have to justify your counterexample. (5 points each)

(a) A convergent sequence is bounded. True

(b) A Cauchy sequence converges. False

Let X = and {an} ⊂ X be a sequence of positive numbers with a2
n → 2. Then {an} is

Cauchy but does not converge.

(c) If
∑

an converges then limn→∞ an = 0. True

(d) Every sequence in a compact set has a convergent subsequence. True

(e) If A is a set and B ⊂ A is a proper subset (i.e. B 6= A), then the cardinalities of A and B
are not equal. False

Let A = and B =, for instance.

(f) If U is an open set, then the interior of the closure of U is equal to U . False

Let U = (0, 1) ∪ (1, 2) ⊂.

(g) If
∑∞

n=0 an converges, and {anj
}j∈ is a subsequence, then

∑∞
j=0 anj

converges. True

(h) Let {an} be a sequence in a metric space X. Let E be the set of all limits of subsequences
of {an}n∈. Then E is closed. True

(i) Let {an}n∈ ⊂ be a sequence such that limn→∞ |an+1 − an| converges. Then {an} converges.
False

Let an = 1/1 + . . . 1/n.

(j) The product of two irrational numbers is irrational. False

For example,
√

2
√

2 = 2.

2



3. Do three of the following four problems. If you turn in solutions to all four, I will simply grade
the first three. (10 points each)

(a) Let {an}n∈ ⊂ be a sequence such that
∑
|an| converges. Show that

∑
an converges.

Let sn = a1 + . . . + an. Then it is enough to show that {sn} is Cauchy. On the other hand,
if

tn = |a1|+ . . . + |an|,

then {tn} is Cauchy by hypothesis. So let ε > 0 be given, and choose N ∈ such that
|tn − tm| < ε for all n, m ≥. Then if m ≥ n ≥, we also have

|sm − sn| = |an+1 + . . . am| ≤ |an+1|+ . . . |am| = |tm − tn| < ε.

Hence {sn} is Cauchy, and we’re on to the next problem.

(b) Let X be a metric space and E ⊂ X. Prove that the interior of E is open.

Let U be the interior of E. Given a point p ∈ U , we must show that p is an interior point
of U . By definition of U , we know that there is r > 0 such that Nr(p) ⊂ E. But then if
q ∈ Nr(p), we also have

Nr−d(p,q)(q) ⊂ Nr(p) ⊂ E.

Hence q ∈ U , too. But q ∈ Nr(p) was arbitrary, so Nr(p) ⊂ U . We conclude that p is an
interior point of U , as desired.

(c) Prove that there is no x ∈ such that x3 = 24.

Suppose there is such an x. We can write x = p/q where p and q have no common divisors.
Then p3 = 24q3. In particular, all factors of 24 divide p3. Therefore, the prime factors, such
as 3 divide p itself. So we can write p = 3k for some k ∈. This gives us that 9k3 = 8q3.
Now we see that 3 divides q3 and therefore also q. We conclude that 3 is a common factor
of p and q, contradicting our initial assumption that p and q had no common divisors. This
shows that x cannot exist.

(d) Prove that a closed subset of a compact set is compact.

Let E be a closed subset of a compact set K in a metric space X. Let U be an open cover
of E. Then U ∪ {X − E} is an open cover of K. So by hypothesis, we have elements
U1, . . . , Un ⊂ U such that

K ⊂ U1 ∪ . . . ∪ Un ∪X − E.

It follows immediately that X ⊂ U1 ∪ . . . ∪ Un. Therefore, X is compact, and this proof is
closed. Get it, closed?
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4. Take home problem(s), due Monday 10/14 by class time. Do one of two—note that the second
problem is both longer and worth more points than the first one. If you turn in solutions to both,
I will grade only the first. The only resources you are to use in solving these problems are your
textbook and yourself. I will answer questions about the problems only insofar as they clarify
what is written here.

(a) Let {an} ⊂ X be a sequence in a complete metric space such that
∑∞

n=0 d(an+1, an) converges.
Show that {an} converges. (15 points)

Since X is complete it is enough to show that {an} is Cauchy. Let sn = d(a2, a1) +
. . . d(an+1, an) be the partial sums of the series above. Then we know that {sn} is Cauchy
by hypothesis. Given ε > 0 choose N ∈ such that

|sn − sm| < ε

for all n, m ≥ N . Then if m ≥ n ≥ N + 1 we have from the triangle inequality that

d(an, am) ≤ d(an+1, an) + . . . d(am, am−1) = |sn−1 − sm| < ε.

So {an} is Cauchy, like we wanted it to be.

(b) Let U ⊂ be an open set. Complete the following outline to show that U is a finite or
countable union of mutually disjoint intervals. (20 points total)

• For x, y ∈ U , let us say that x ∼ y if and only if there is an open interval (a, b) ⊂ U
containing both x and y. Show that ∼ is an equivalence relation.

Fix x ∈ U . Since U is open, we have r > 0 such that Nr(x) = (x − r, x + r) ⊂ U .
Therefore x ∼ x, and ∼ is reflexive. Moreover, if x ∼ y, then there exists (a, b) ⊂ U
containing both x and y, so y ∼ x, too. Therefore ∼ is symmetric. Finally, if x ∼ y
and y ∼ z, then we have open intervals (a, b), (c, d) ⊂ U such that x, y ∈ (a, b) and
y, z ∈ (c, d) In particular, (a, b) ∩ (c, d) 6= ∅, so (a, b) ∪ (c, d) is again an open interval.
Therefore, x ∼ z, and ∼ is transitive.

• For each x ∈ U , let U(x) be the equivalence class of x. Show that U(x) is an open
interval.

Fix x ∈ U and consider any point y ∈ U(x). Then x, y ∈ (a, b) ⊂ U for some (a, b).
This implies that (a, b) ⊂ U(x). So y is an interior point of U(x), and U(x) is open.
Suppose now that y, z ∈ U(x) and y < t < z. Then by transitivity, y ∼ z. That is,
there is an interval (a, b) ∈ U such that y, z ∈ (a, b). Again by transitivity, we see that
(a, b) ⊂ U(x). In particular t ∈ U(x). So U(x) is an interval.

• Show that there are at most countably many distinct equivalence classes U(x) ⊂ U .

Fix x ∈ X. Since U(x) is open, we can choose a point q = q(x) ∈ ∩U(x). Now if y ∈ X
is another point, we have either U(x) = U(y), in which case, we can take q(y) = q(x);
or U(x) ∩ U(y) = ∅, in which case, we definitely ahve q(x) 6= q(y).
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So if we define f(U(x)) = q(x), we see that f is an injective function from the set of
equivalence classes of ∼ into . In particular, the cardinality of the set of equivalence
classes is the same as that of some subset of , so it is therefore finite or countable.

• Conclude. Then draw a little filled in square at the end of your proof, taking scrupulous
care to ensure that all four sides have the same length and that all four angles measure
π/2.

There’s not really much left to say. The equivalence classes of ∼ form a partition of U .
As there are countably many of them, and each is an open interval, we have proven that
U is a union of finitely or countably many mutually disjoint open intervals.
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