
Supplementary problems (assigned 11/24/03)

1. Solve the following initial value problems

(a) y′ = sin t
y , y(π/2) = 1.

(b) (1 + t2)y′ + 4ty = (1 + t2)−2, y(1) = 0.

2. Disillusioned about mathematics, you descend the ivory tower and set yourself the task of
becoming a millionaire by age 50. The plan is simple. You will stash away money continuously
from now til then at a constant rate of R$ per year. You figure that in your new life as day
trader, you can make a reliable 8% annual interest (compounded continuously, of course)
on your savings. Unfortunatly, college has left you broke as well as disillusioned, so you’re
starting from nothing. At what rate R will you need to be saving your money?

3. Remember Newton’s method? The idea is that you have an open set U ⊂ and a C1 function
f : U →. You know that f(r) = 0 for some point r ∈ U , and you have a decent initial guess
x0 at the location of r. Beginning with this guess, you then produce a sequence of (hopefully
better) approximations of r by setting

xn+1 = N(xn)

for every n ∈, where N(x) = x−f(x)/f ′(x). Assuming that the root r of f is non-degenerate
(meaning f ′(r) 6= 0), show that there exists δ > 0 such that

• x ∈ (r − δ, r + δ) implies that N(x) ∈ (r − δ, r + δ);
• the restriction of N to the interval (x− δ, x + δ) is a contraction mapping;
• if x0 ∈ (r − δ, r + δ), then limn→∞ xn = r.

The main point here is the second one. The other two follow fairly quickly once you figure
this one out. To prove the second item, you’ll need the Mean Value Theorem again. Also
note that you’ll definitely need the continuity of f ′ here.

4. Suppose that f, g :2→ are continuous functions and that f(y, t) > g(y, t) for all points (y, t) ∈2.
Let y1, y2 :→ be functions satisfying

y′1 = f(y1, t), y′2 = g(y2, t)

for all t ∈. Show that y1(t0) = y2(t0) for at most one point t0 ∈. If such a point t0 exists,
what must be the relationship between y1(t) and y2(t) for points t > t0? t < t0?

5. Let y = C(t) be the unique solution of the initial value problem

y′′ + y = 0, y(0) = 1, y′(0) = 0.

It can be shown (i.e. you can assume) that C is well-defined for all t ∈. Let S(t) = −C ′(t).
Prove the following about C and S.



(a) S′(t) = C(t) for all t ∈.

(b) S satisfies the same differential equation as C but with initial values S(0) = 0, S′(0) = 1.

(c) S2(t) + C2(t) = 1 for all t ∈. In particular, the ranges of S and C are contained in the
interval [−1, 1].

(d) C is an even function and S is odd (i.e. C(−t) = C(t) and S(−t) = −S(t) for all t ∈.

(e) There exists a number P/2 > 0 such that C(P/2) = 0 but C(t) > 0 for all t ∈ [0, P/2).

(f) S(P/2) = 0.

(g) C(t + a) = C(t)C(a)− S(t)S(a) and S(t + a) = S(t)C(a) + S(a)C(t) for all t, a ∈.

(h) S and C are periodic functions with (minimal) period 2P .

(i) The ranges of S and C are exactly equal to [−1, 1].

6. Redo supplementary problem 2 from the homework assigned on 11/3/03:

As a guide, here is the solution to problem 1 from the same assignment:

Proof. Let ε > 0 be given. Proving that the conclusion holds is equivalent to constructing a
partition P of [a, b] for which

U(P, f)− L(P, f) < ε.

Let M be an upper bound for |f | on [a, b]. By hypothesis we can find mutually disjoint open
intervals Ij , j = 1, . . . , n covering the set S of discontinuities of f such that

|I1|+ . . . + |In| < ε/2M

Let us write Ij = (aj , bj). By putting the intervals in order (and intersecting them with [a, b],
if necessary) we can suppose that

a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b.

so that Q = {a, a1, b1, . . . , an, bn, b} is a (not very well labeled!) partition of [a, b].

For convenience, let us define b0 = a, an+1 = b. Then the condition S ⊂ I1 ∪ . . . ∪ In means
that f is continuous on the closed intervals [bj , aj+1] for 0 ≤ j ≤ n. Therefore f is integrable
on each of these intervals, and we can choose a partition Pj of [bj , aj+1] such that

U(Pj , f)− L(Pj , f) <
ε

2(n + 1)
.

Now we define our partition P to be the union of the Pj , j = 1, . . . , n (note in particular
that Q ⊂ P , since every point in Q is the endpoint of one the partitions Pj). Then using the
upper bound M for |f | chosen above, we can estimate

U(P, f) ≤ U(P0, f) + M(b1 − a1) + U(P1, f) + M(b2 − a2) + . . . + M(bn − an) + U(Pn, f)
L(P, f) ≥ L(P0, f)−M(b1 − a1) + L(P1, f)−M(b2 − a2) + . . .−M(bn − an) + L(Pn, f).

Therefore

U(P, f)−L(P, f) ≤
n∑

j=0

U(Pj , f)−L(Pj , f)+2M

n∑
k=1

(bk−ak) < (n+1)
ε

2n + 1
+2M

ε

4M
= ε.


