Supplementary problems (assigned 11/17/03)

1. Prove that $\cos (2 x)$ is analytic at every point.
2. (Not entirely irrelevant sequence problem) Let $\left\{a_{i, j}\right\}_{i, j \in} \subset^{+}$be a double sequence of positive numbers. Suppose that

- for each fixed $i \in$ the sequence $\left\{a_{i, j}\right\}_{j \in}$ is increasing and converges to to a number $A_{i} \in$; and
- $\sum_{i=0}^{\infty} A_{i}$ converges (call the value of the sum A).

Show that

- $\sum_{i=0}^{\infty} a_{i, j}$ converges for each fixed $j \in\left(\right.$ call the value of the sum $\left.A_{j}\right)$; and
- $\lim _{j \rightarrow \infty} A_{j}=A$.

The main point here is the second item, because it involves switching two limits

