## Supplementary problems (assigned 9/12/03)

We define the distance between any two non-empty subsets $A$ and $B$ of a metric space $X$ by

$$
(A, B) \inf \{d(x, y): x \in A, y \in B\}
$$

(Note that the infimum exists since 0 is a lower bound for the set on the right side.)

1. Prove that $(A, B)>0$ implies $A \cap B=\emptyset$ (not much to do here).
2. Give an example that shows we can have $(A, B)=0$ even if $A \cap B=\emptyset$.
3. Prove that if $A$ is closed, $B$ is compact and $A \cap B=\emptyset$, then $(A, B)>0$.
