Supplementary problems (assigned 11/3/03)

1. (Leftover differentiation problem) Suppose that $f:(a, b) \rightarrow$ is a convex function that is differentiable at every $x \in(a, b)$. Show that f^{\prime} is continuous. (Hint: you can, of course, use the results of previous homework problems about convexity; moreover, there is a theorem in the book that makes this problem much easier-for once, it is not the mean value theorem or the chain rule.)
2. The function $1 / t$ is continuous on $(0, \infty)$. Therefore the function

$$
f(x)=\int_{1}^{x} \frac{d t}{t} .
$$

is well-defined for all $x \in(0, \infty)$. Prove each of the following about f.

- f is differentiable at every point and strictly increasing.
- $f(x y)=f(x)+f(y)$ for every $x, y \in(0, \infty)$. It helps here to think of y as a constant so that both sides are functions of x only.
- $f\left(x^{t}\right)=t f(x)$ for all $t \in, x \in(0, \infty)$. Remember the problem from the first chapter in which x^{t} was defined for any real t - the idea was to do it first for $t \in$, then for $t \in$, and then, using supremums, for $t \in$.
- $f(0, \infty)=$. In particular, there is a unique number $d \in(1, \infty)$ such that $f(d)=1$.
- f is an invertible function and that $f^{-1}(y)=d^{y}$ for all $y \in$.

