Solutions to Homework 10

Supplementary problem 1. Prove that cos(2x) is analytic at every point.

Solution. Let f(z) = cos(2z) and fix a point a €. Let T,,(x) be the nth order Taylor polynomial
of f centered at a. We will show that lim, .. T,(x) = f(z) for every z e—i.e.

lim |f(z) — Tn(z)| = 0.

n—oo

By Taylor’s theorem, we have
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for some ¢ between x and a. Moreover, the (n + 1)st derivative of f at c is always 2"*! times
+ cos 2¢ or £sin2¢, so |f"F(c)| < 2"*!. Therefore
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£(2) = Tufe)] < =00

which converges to 0 as n — oo, regardless of = and a. Hence for all x € (especially those in a
neighborhood of a) f(z) agrees with its Taylor series (centered at a) evaluated at . We conclude
that f is analytic at a. Since a was arbitrary, f is analytic at all points in .

Supplementary problem 2 (Not entirely irrelevant sequence problem) Let {a;;}ijc CT be a
double sequence of positive numbers. Suppose that

e for each fixed ¢ € the sequence {a; ;};c is increasing and converges to to a number A4; €; and
o > A; converges (call the value of the sum S).
Show that
e >, a;; converges for each fixed j € (call the value of the sum S;); and
e lim; ., 5;=S.
The main point here is the second item, because it involves switching two limits.

Solution. Since |a;;| = a;; < A; and since ) A; converges, we can apply Theorem 3.25 to
conclude that )% a;; converges. So the first conclusion holds.

Now to show that lim; .o S; =S, let s, = > i A; and s, ; = > 1" a; ; be the partial sums of
the series concerned. Given € > 0, choose N € such that that n > N implies that

D Ai=|S—sa <¢/3.

i=n+1

It follows that

|Sj — snjl =

Z a;j < Z A; <€/3,

1=n-+1 1=n+1



as well.
Moreover, we can exchange a limit with a finite sum to obtain

lim sy ; = sn.

j—o0
Hence, there exists J € such that j > J implies that
|sn; — sn| < €/3.
Putting these observations together gives us for j > J that
|Sj =S| =1[Sj—snj+sn;—SnN+Sn—S| < [Sj—snj|l+|sn;—Sn|+|Sn—5| < €/3+¢€/3+€¢/3 =€

So S; — S, as desired.

Solution to #2 on Page 165. By hypothesis and problem #1 (on the same page), there exists
a number M € such that |f,(2)], |gn(x)| < M for all x and for all n €. Hence

[fn(@)gn(x) = f(2)g(x)] = [fa(@)gn(z) = fu(x)g(x) + fo(@)g(@) — f(2)g(x)] < [fn(2)llgn(z) — g(2)| + |g(2)]|fn
So if we are given € > 0, we can choose N1, Ny € such that n > Nj implies that
[fu(z) = f(2)] < e/2M
for all x, and similarly, n > Ny implies that
lgn(2) — g(2)| < €/2M
for all . Let N = max{Ny, No}. Then n > N and the estimates above imply that
[fn(2)gn () — f2)g(2)| < M(e/2M + €/2M) = €

for all xz. We conclude that {f,g,} converges uniformly to fg.

Solution to #3 on page 165.

Let fn,gn :— be given by f,(z) = gn(x) =  + 1/n. Then both {f,} and {g,} converge
uniformly to the identity function f(z) = z. On the other hand f,(x)g,(x) = 22 + 22/n + 1/n?
converges pointwise to f(x)? but not uniformly. To see this note that for 2 = n, we have

|fn(x)gn(m) - f($)2| = |213/’I’L—|— 1/712’ >2

for all n €. So if we take ¢ = 2, there is no N € such that n > N implies that

[fa(@)gn(z) — f(2)?] < e

for all x €.

Solution to #9 on page 166. Given ¢ > 0, we must find N € such that

|fn(xn) - f($)| <€



when n > N, so this is what we do: by hypothesis there exists N1 € such that n > N; implies that

(@) = fl2)] <€/2

for all x € E. Moreover, the limit function f(x) is continuous by Theorem 7.12, so there exists
d > 0 such that |z, — z| < ¢ implies that

|f(zn) — f(2)] <€/2
. Finally, since x,, — z, there is Ny € such that n > Ny implies that n > Ny implies that
|zy, — 2| < 0.
So if we take N = max{Nj, N2}, we obtain for n > N that

[fn(@n) = F(2)] < [falzn) = f@a)| + | f(2n) = f(2)] < €/2+€/2=¢

as desired.
As for the ‘converse’ statement, it depends on what Rudin means by ’converse’ here. I interpret
it as follows: suppose that for any x € E and any sequence {x,} converging to = we have that
lim f,(z,) = f(z).
n—oo
Then f, converges uniformly to f.

This is false. As a counterexample, take for instance f,(z) = «/n and f(z) =0 for all z €. If
{z,} is a convergent sequence of points with limit x, then we have

M
lim |fp(zn) — f(z)] = lim ‘ﬁ < lim = =0
n—oo
simply because a convergent sequence of real numbers is bounded (M here is any upper bound for

{|zn|}). On the other hand taking x = n for each n, we see that there is always some point at
which |f,(z) — f(z)| > 1. Hence f,, does not converge to f uniformly.



