Solutions to Homework 10

Supplementary problem 1. Prove that $\cos (2 x)$ is analytic at every point.
Solution. Let $f(x)=\cos (2 x)$ and fix a point $a \in$. Let $T_{n}(x)$ be the nth order Taylor polynomial of f centered at a. We will show that $\lim _{n \rightarrow \infty} T_{n}(x)=f(x)$ for every $x \in$-i.e.

$$
\lim _{n \rightarrow \infty}\left|f(x)-T_{n}(x)\right|=0 .
$$

By Taylor's theorem, we have

$$
\left|f(x)-T_{n}(x)\right|=\frac{\left|f^{n+1}(c)\right|}{(n+1)!}|x-a|^{n+1}
$$

for some c between x and a. Moreover, the $(n+1)$ st derivative of f at c is always 2^{n+1} times $\pm \cos 2 c$ or $\pm \sin 2 c$, so $\left|f^{n+1}(c)\right| \leq 2^{n+1}$. Therefore

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{(2|x-a|)^{n+1}}{(n+1)!}
$$

which converges to 0 as $n \rightarrow \infty$, regardless of x and a. Hence for all $x \in$ (especially those in a neighborhood of a) $f(x)$ agrees with its Taylor series (centered at a) evaluated at x. We conclude that f is analytic at a. Since a was arbitrary, f is analytic at all points in .

Supplementary problem 2 (Not entirely irrelevant sequence problem) Let $\left\{a_{i, j}\right\}_{i, j \in} \subset^{+}$be a double sequence of positive numbers. Suppose that

- for each fixed $i \in$ the sequence $\left\{a_{i, j}\right\}_{j \in}$ is increasing and converges to to a number $A_{i} \in$; and - $\sum_{i=0}^{\infty} A_{i}$ converges (call the value of the sum S).

Show that

- $\sum_{i=0}^{\infty} a_{i, j}$ converges for each fixed $j \in\left(\right.$ call the value of the sum $\left.S_{j}\right)$; and
- $\lim _{j \rightarrow \infty} S_{j}=S$.

The main point here is the second item, because it involves switching two limits.
Solution. Since $\left|a_{i, j}\right|=a_{i, j} \leq A_{i}$ and since $\sum A_{i}$ converges, we can apply Theorem 3.25 to conclude that $\sum_{i=0}^{\infty} a_{i, j}$ converges. So the first conclusion holds.

Now to show that $\lim _{j \rightarrow \infty} S_{j}=S$, let $s_{n}=\sum_{i=0}^{n} A_{i}$ and $s_{n, j}=\sum_{i=0}^{n} a_{i, j}$ be the partial sums of the series concerned. Given $\epsilon>0$, choose $N \in$ such that that $n \geq N$ implies that

$$
\sum_{i=n+1}^{\infty} A_{i}=\left|S-s_{n}\right| \leq \epsilon / 3
$$

It follows that

$$
\left|S_{j}-s_{n, j}\right|=\sum_{i=n+1}^{\infty} a_{i, j} \leq \sum_{i=n+1} A_{i} \leq \epsilon / 3
$$

as well.
Moreover, we can exchange a limit with a finite sum to obtain

$$
\lim _{j \rightarrow \infty} s_{N, j}=s_{N} .
$$

Hence, there exists $J \in$ such that $j \geq J$ implies that

$$
\left|s_{N, j}-s_{N}\right| \leq \epsilon / 3
$$

Putting these observations together gives us for $j \geq J$ that
$\left|S_{j}-S\right|=\left|S_{j}-s_{N, j}+s_{N, j}-S_{N}+S_{N}-S\right| \leq\left|S_{j}-s_{N, j}\right|+\left|s_{N, j}-S_{N}\right|+\left|S_{N}-S\right|<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon$.
So $S_{j} \rightarrow S$, as desired.

Solution to \#2 on Page 165. By hypothesis and problem \#1 (on the same page), there exists a number $M \in$ such that $\left|f_{n}(x)\right|,\left|g_{n}(x)\right| \leq M$ for all x and for all $n \in$. Hence

$$
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right|=\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)+f_{n}(x) g(x)-f(x) g(x)\right| \leq\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+|g(x)| \mid f_{n}(
$$

So if we are given $\epsilon>0$, we can choose $N_{1}, N_{2} \in$ such that $n \geq N_{1}$ implies that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon / 2 M
$$

for all x, and similarly, $n \geq N_{2}$ implies that

$$
\left|g_{n}(x)-g(x)\right|<\epsilon / 2 M
$$

for all x. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then $n \geq N$ and the estimates above imply that

$$
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right|<M(\epsilon / 2 M+\epsilon / 2 M)=\epsilon
$$

for all x. We conclude that $\left\{f_{n} g_{n}\right\}$ converges uniformly to $f g$.

Solution to \#3 on page 165.

Let $f_{n}, g_{n}: \rightarrow$ be given by $f_{n}(x)=g_{n}(x)=x+1 / n$. Then both $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converge uniformly to the identity function $f(x)=x$. On the other hand $f_{n}(x) g_{n}(x)=x^{2}+2 x / n+1 / n^{2}$ converges pointwise to $f(x)^{2}$ but not uniformly. To see this note that for $x=n$, we have

$$
\left|f_{n}(x) g_{n}(x)-f(x)^{2}\right|=\left|2 x / n+1 / n^{2}\right| \geq 2
$$

for all $n \in$. So if we take $\epsilon=2$, there is no $N \in \operatorname{such}$ that $n \geq N$ implies that

$$
\left|f_{n}(x) g_{n}(x)-f(x)^{2}\right|<\epsilon
$$

for all $x \in$.

Solution to $\# 9$ on page 166. Given $\epsilon>0$, we must find $N \in$ such that

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right|<\epsilon
$$

when $n \geq N$, so this is what we do: by hypothesis there exists $N_{1} \in$ such that $n \geq N_{1}$ implies that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon / 2
$$

for all $x \in E$. Moreover, the limit function $f(x)$ is continuous by Theorem 7.12, so there exists $\delta>0$ such that $\left|x_{n}-x\right|<\delta$ implies that

$$
\left|f\left(x_{n}\right)-f(x)\right|<\epsilon / 2
$$

. Finally, since $x_{n} \rightarrow x$, there is $N_{2} \in$ such that $n \geq N_{2}$ implies that $n \geq N_{2}$ implies that

$$
\left|x_{n}-x\right|<\delta .
$$

So if we take $N=\max \left\{N_{1}, N_{2}\right\}$, we obtain for $n \geq N$ that

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

as desired.
As for the 'converse' statement, it depends on what Rudin means by 'converse' here. I interpret it as follows: suppose that for any $x \in E$ and any sequence $\left\{x_{n}\right\}$ converging to x we have that

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

Then f_{n} converges uniformly to f.
This is false. As a counterexample, take for instance $f_{n}(x)=x / n$ and $f(x)=0$ for all $x \in$. If $\left\{x_{n}\right\}$ is a convergent sequence of points with limit x, then we have

$$
\lim _{n \rightarrow \infty}\left|f_{n}\left(x_{n}\right)-f(x)\right|=\lim _{n \rightarrow \infty}\left|\frac{x_{n}}{n}\right| \leq \lim _{n \rightarrow \infty} \frac{M}{n}=0
$$

simply because a convergent sequence of real numbers is bounded (M here is any upper bound for $\left.\left\{\left|x_{n}\right|\right\}\right)$. On the other hand taking $x=n$ for each n, we see that there is always some point at which $\left|f_{n}(x)-f(x)\right| \geq 1$. Hence f_{n} does not converge to f uniformly.

