Homework Set 5: Solutions

Page 78, \# 4.

Note that for $n=2 m+1$ odd, we have

$$
s_{2 m+1}=\frac{1}{2}+s_{2 m}=\frac{1+s_{2 m-1}}{2} .
$$

I.e. $s_{2 m+1}$ is the average of $s_{2 m-1}$ and 1 . So if we set $a_{n}=s_{n}-1$, we get

$$
a_{2 m+1}=\frac{1+a_{2 m-1}+1}{2}-1=\frac{a_{2 m-1}}{2} .
$$

Applying this formula repeatedly gives

$$
s_{2 m+1}=1+a_{2 m+1}=1+\frac{a_{1}}{2^{m}}=1-\frac{1}{2^{m}}
$$

because $a_{1}=s_{1}-1=-1$. Turning to the terms with even indices, we compute

$$
s_{2 m}=\frac{s_{2 m-1}}{2}=\frac{1}{2}-\frac{1}{2^{m}} .
$$

Now let $\left\{s_{n_{k}}\right\}_{k \in}$ be any convergent subsequence with limit L. Then any further subsequence $\left\{s_{n_{k \ell}}\right\}$ (!) must converge to L, too. So if n_{k} is odd for infinitely many indices $k \in$, then the work above shows that $L=1$. And if this does not happen, then n_{k} must be odd for infinitely many indices, in which case our work above shows that $L=1 / 2$. All told, we see that any convergent subsequence has limit equal to either 1 or $1 / 2$. Therefore,

$$
\limsup s_{n}=1, \quad \liminf s_{n}=1 / 2
$$

Page 80, \# 14

Part a: Given $\epsilon>0$, choose $N_{1} \in \operatorname{such}$ that $\left|s_{n}-s\right|<\epsilon / 2$ for all $n \geq N_{1}$. Set

$$
M=\max _{n<N_{1}}\left|s_{n}-s\right|
$$

and choose $N_{2} \in$ so that $N_{1} M<\left(N_{2}+1\right) \epsilon / 2$. Then take $N=\max \left\{N_{1}, N_{2}\right\}$. If $n \geq N$, we estimate

$$
\begin{aligned}
\left|\sigma_{n}-s\right| & =\frac{\left|s_{0}+s_{1}+\ldots s_{n}-(n+1) s\right|}{n+1} \\
& \leq \frac{\left|s_{0}-s\right|}{n+1}+\ldots \frac{\left|s_{n}-s\right|}{n+1} \\
& <\frac{\left|s_{0}-s\right|}{n+1}+\ldots \frac{\left|s_{N_{1}-1}-s\right|}{n+1}+\frac{\left(n-N_{1}+1\right)}{n+1} \frac{\epsilon}{2} \\
& <N_{1} \frac{M}{n+1}+\frac{n-N_{1}+1}{n+1} \frac{\epsilon}{2} \\
& <\frac{N_{2}+1}{n+1} \frac{\epsilon}{2}+\frac{\left(n-N_{1}+1\right)}{n+1} \frac{\epsilon}{2} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

We conclude that $\lim _{n \rightarrow \infty} \sigma_{n}=s$.
Parts band c: Let $\left\{a_{n}\right\}$ be some sequence of positive numbers for which $\sum a_{n}=m$ is finite. Then in particular, $\lim a_{n}=0$. Let $s_{n}=k$ if $n=2^{k}$ for some $k \in$, but $s_{n}=a_{n}$ otherwise. Then

$$
\limsup s_{n}=\lim _{k \rightarrow \infty} s_{2^{k}}=\infty, \quad \lim \inf s_{n}=\lim a_{n}=0
$$

so that $\lim _{n \rightarrow \infty} s_{n}$ does not exist. Moreover, given $n \in$, let K be the largest integer such that $2^{K} \leq n$. Then

$$
\sigma_{n}<\frac{1}{n+1}\left(\sum_{0}^{n} a_{n}+\sum_{k=0}^{K} k\right)<\frac{1}{n+1}\left(m+\frac{K(K+1)}{2}\right) \leq \frac{m}{n+1}+\frac{K(K+1)}{2\left(2^{K}+1\right)}
$$

which tends to zero as n (and therefore K) tends to infinity.

Page 81, \# 16.

Part a: First note that if $x_{n}>\sqrt{\alpha}$, then

$$
x_{n+1}-\sqrt{\alpha}=\frac{x_{n}^{2}-2 x_{n} \sqrt{\alpha}+\alpha}{2 x_{n}}=\frac{\left(x_{n}-\sqrt{\alpha}\right)^{2}}{2 x_{n}}>0 .
$$

so that $x_{n+1}>\sqrt{\alpha}$, too. Since $x_{1}>\sqrt{\alpha}$, we conclude that $x_{n}>\sqrt{\alpha}$ for every $n \in$.
In addition

$$
x_{n+1}-x_{n}=\frac{\sqrt{\alpha}-x_{n}}{2 x_{n}}<0,
$$

so that $\left\{x_{n}\right\}$ is a decreasing sequence that is bounded below by $\sqrt{\alpha}$. We conclude that $L:=$ $\lim _{n \rightarrow \infty} x_{n}$ exists and that $L \geq \sqrt{\alpha}$.

Taking the limit of both sides in the recursion formula for x_{n} gives

$$
L=\frac{L^{2}+\sqrt{a}}{2 L}
$$

which, after rearranging, yields $L^{2}=\alpha$. Therefore $L=\sqrt{\alpha}$.
Part b: The formula for ϵ_{n+1} in terms of ϵ_{n} is just the first displayed equation in part (a). Everything else follows from $x_{n}>\sqrt{\alpha}$ and induction on n.

Page 82, \# 20. Let $p=\lim _{i \rightarrow \infty} p_{n_{i}}$ be the limit of the convergent subsequence. We will show using the definition of limit that $p=\lim _{n \rightarrow \infty} p_{n}$. To this end, let $\epsilon>0$ be given. By hypothesis, there exists $N_{1} \in$ such that $i \geq N_{1}$ implies that $d\left(p_{n_{i}}, p\right)<\epsilon / 2$. Also, since $\left\{p_{n}\right\}$ is Cauchy, there exists $N_{2} \in$ such that $n, m \geq N_{2}$ implies $d\left(p_{n}, p_{m}\right)<\epsilon / 2$. Now let $N=\max \left\{N_{1}, N_{2}\right\}$ and choose $i \geq N$. Then if $n \geq N$, we have

$$
d\left(p_{n}, p\right) \leq d\left(p_{n}, p_{n_{i}}\right)+d\left(p_{n_{i}}, p\right)<\epsilon / 2+\epsilon / 2=\epsilon .
$$

Note that the bound on the first term in the middle comes from the fact that $n_{i} \geq i \geq N_{2}$, and the bound on the second term comes from the fact that $i \geq N_{1}$.

Page 82, \# 23. Let $d_{n}=d\left(p_{n}, q_{n}\right)$. Then we must show that the sequence $\left\{d_{n}\right\} \subset$ converges. Since is complete, it will be enough to show this sequence is Cauchy. We prove this last fact directly from the definition of Cauchy sequence.

Let $\epsilon>0$ be given. Then by hypothesis, there exists $N_{1} \in \operatorname{such}$ that $d\left(p_{n}, p_{m}\right)<\epsilon / 2$ for all $n, m \geq N_{1}$. Similarly, we have $N_{2} \in$ such that $d\left(q_{n}, q_{m}\right)<\epsilon / 2$ for all $n, m \geq N_{2}$. So taking $N=\max \left\{N_{1}, N_{2}\right\}$ and arbitrary integers $n, m \geq N$, we apply the triangle inequality (four times!) to estimate

$$
\begin{aligned}
\left|d_{n}-d_{m}\right| & =\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right| \\
& =\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}, q_{m}\right)+d\left(p_{n}, q_{m}\right)-d\left(p_{m}, q_{m}\right)\right| \\
& \leq\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}, q_{m}\right)\right|+\left|d\left(p_{n}, q_{m}\right)-d\left(p_{m}, q_{m}\right)\right| \\
& \leq d\left(q_{n}, q_{m}\right)+d\left(p_{n}, p_{m}\right)<\epsilon / 2+\epsilon / 2=\epsilon .
\end{aligned}
$$

(To see what's going on with the second last inequality, it helps to draw yourself a picture.) We conclude that $\left\{d_{n}\right\}$ is Cauchy, which is what we needed to prove.

