Homework Set 5: Solutions

Page 78, # 4.
Note that for n = 2m + 1 odd, we have

1 1+ som—1

S2m+1 = 5 + Som = 2

Le. soma1 is the average of sop,—1 and 1. So if we set a, = s, — 1, we get

a _1+a2m—1+1_1_a2m—1
2m+1 — 9 - 9 .
Applying this formula repeatedly gives
aj 1
Samt1 =14 aomp =1+ o0 =1-o0
because a; = s; — 1 = —1. Turning to the terms with even indices, we compute

Som—1 1 1

2 2 om’

Som =

Now let {sp, tre be any convergent subsequence with limit L. Then any further subsequence
{Sny,} (!) must converge to L, too. So if ny is odd for infinitely many indices k €, then the work
above shows that L = 1. And if this does not happen, then n; must be odd for infinitely many
indices, in which case our work above shows that L = 1/2. All told, we see that any convergent

subsequence has limit equal to either 1 or 1/2. Therefore,

limsups, =1, liminfs, =1/2.
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Part a: Given € > 0, choose N; € such that |s, — s| < €/2 for all n > N;. Set

M = max |s, — s
n<Np

and choose Ny € so that Ny M < (Na+1)e/2. Then take N = max{Ny, No}. If n > N, we estimate

lso+s1+...5, — (n+1)s]

lon =5 = n+1

lso — s| |sn, — s

- n+1 n+1
|so — | [sv1 =8| (n=Nit1)e
n+1 n+1 n+1 2

M n—Ni+1e¢

< Mot n+1 2
No+1e€ (TL—N1+1)€
n+1 2 n+1 2
€ €

< §+§—6

We conclude that lim,, .o 0, = s.

Parts b and c: Let {a,} be some sequence of positive numbers for which » a,, = m is finite.
Then in particular, lima, = 0. Let s, = k if n = 2¥ for some k €, but s,, = a,, otherwise. Then

limsup s, = lim sy = 00, liminf s,, = lima, =0
k—oo

so that lim,, .. s, does not exist. Moreover, given n €, let K be the largest integer such that
2K < n. Then

1 [ K 1 K(K +1) m  K(K+1)
< — k| < —— <
on n+1<20:“”+k20> n+1<m+ 2 >_n—|—1+2(2K+1)

which tends to zero as n (and therefore K) tends to infinity.
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Part a: First note that if x,, > /a, then

2 2
_9 _
et — Va = xn — 2xp/a+ _ (X — V) 0.
2x, 2x,

so that z,11 > v/, too. Since x; > /a, we conclude that x,, > \/a for every n €.

In addition
 Va—x,

< 0,
2z,

Tpn41 — Tn
so that {x,} is a decreasing sequence that is bounded below by /a. We conclude that L :=
lim,, oo 2, exists and that L > \/a.

Taking the limit of both sides in the recursion formula for x,, gives

L_L2+ﬁ
2L

which, after rearranging, yields L? = a. Therefore L = \/a.

Part b: The formula for €,.1 in terms of €, is just the first displayed equation in part (a).
Everything else follows from x,, > /o and induction on n.

Page 82, # 20. Let p = lim; .o pn, be the limit of the convergent subsequence. We will show
using the definition of limit that p = lim, . p,. To this end, let ¢ > 0 be given. By hypothesis,
there exists Ny € such that ¢ > N; implies that d(pn,;,p) < €/2. Also, since {p,} is Cauchy, there
exists Ny € such that n,m > Ny implies d(p,, pm) < €/2. Now let N = max{Ny, No} and choose
i > N. Then if n > N, we have

Note that the bound on the first term in the middle comes from the fact that n; > ¢ > Ny, and the
bound on the second term comes from the fact that ¢ > Nj.

Page 82, # 23. Let d,, = d(pn,¢n). Then we must show that the sequence {d,} C converges.
Since is complete, it will be enough to show this sequence is Cauchy. We prove this last fact
directly from the definition of Cauchy sequence.

Let € > 0 be given. Then by hypothesis, there exists N; € such that d(p,,pm) < €/2 for all
n,m > Nj. Similarly, we have Ny € such that d(gn,qm) < €/2 for all n,m > Nj. So taking
N = max{Ny, N2} and arbitrary integers n,m > N, we apply the triangle inequality (four times!)
to estimate

|dn - dm| = |d(pna Qn) d(pma Qm)’
= |d(pn, qn) — d(Pn, am) + d(Pn, @m) — d(Pm; gm)|
|d(Pn, n) d(Pm Qm)| + |d(Pm Qm) - d(pm’ Qm)|

<
< d(qn: gm) + d(Pn,pm) < €/2+¢€/2 =¢.

(To see what’s going on with the second last inequality, it helps to draw yourself a picture.) We
conclude that {d,} is Cauchy, which is what we needed to prove.



