
Homework Set 5: Solutions
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Note that for n = 2m + 1 odd, we have

s2m+1 =
1
2

+ s2m =
1 + s2m−1

2
.

I.e. s2m+1 is the average of s2m−1 and 1. So if we set an = sn − 1, we get

a2m+1 =
1 + a2m−1 + 1

2
− 1 =

a2m−1

2
.

Applying this formula repeatedly gives

s2m+1 = 1 + a2m+1 = 1 +
a1

2m
= 1− 1

2m

because a1 = s1 − 1 = −1. Turning to the terms with even indices, we compute

s2m =
s2m−1

2
=

1
2
− 1

2m
.

Now let {snk
}k∈ be any convergent subsequence with limit L. Then any further subsequence

{snk`
} (!) must converge to L, too. So if nk is odd for infinitely many indices k ∈, then the work

above shows that L = 1. And if this does not happen, then nk must be odd for infinitely many
indices, in which case our work above shows that L = 1/2. All told, we see that any convergent
subsequence has limit equal to either 1 or 1/2. Therefore,

lim sup sn = 1, lim inf sn = 1/2.
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Part a: Given ε > 0, choose N1 ∈ such that |sn − s| < ε/2 for all n ≥ N1. Set

M = max
n<N1

|sn − s|

and choose N2 ∈ so that N1M < (N2 +1)ε/2. Then take N = max{N1, N2}. If n ≥ N , we estimate

|σn − s| =
|s0 + s1 + . . . sn − (n + 1)s|

n + 1

≤ |s0 − s|
n + 1

+ . . .
|sn − s|
n + 1

<
|s0 − s|
n + 1

+ . . .
|sN1−1 − s|

n + 1
+

(n−N1 + 1)
n + 1

ε

2

< N1
M

n + 1
+

n−N1 + 1
n + 1

ε

2

<
N2 + 1
n + 1

ε

2
+

(n−N1 + 1)
n + 1

ε

2

<
ε

2
+

ε

2
= ε.

We conclude that limn→∞ σn = s.

Parts b and c: Let {an} be some sequence of positive numbers for which
∑

an = m is finite.
Then in particular, lim an = 0. Let sn = k if n = 2k for some k ∈, but sn = an otherwise. Then

lim sup sn = lim
k→∞

s2k = ∞, lim inf sn = lim an = 0

so that limn→∞ sn does not exist. Moreover, given n ∈, let K be the largest integer such that
2K ≤ n. Then

σn <
1

n + 1

(
n∑
0

an +
K∑

k=0

k

)
<

1
n + 1

(
m +

K(K + 1)
2

)
≤ m

n + 1
+

K(K + 1)
2(2K + 1)

which tends to zero as n (and therefore K) tends to infinity.
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Part a: First note that if xn >
√

α, then

xn+1 −
√

α =
x2

n − 2xn
√

α + α

2xn
=

(xn −
√

α)2

2xn
> 0.

so that xn+1 >
√

α, too. Since x1 >
√

α, we conclude that xn >
√

α for every n ∈.
In addition

xn+1 − xn =
√

α− xn

2xn
< 0,

so that {xn} is a decreasing sequence that is bounded below by
√

α. We conclude that L :=
limn→∞ xn exists and that L ≥

√
α.

Taking the limit of both sides in the recursion formula for xn gives

L =
L2 +

√
a

2L

which, after rearranging, yields L2 = α. Therefore L =
√

α.

Part b: The formula for εn+1 in terms of εn is just the first displayed equation in part (a).
Everything else follows from xn >

√
α and induction on n.

Page 82, # 20. Let p = limi→∞ pni be the limit of the convergent subsequence. We will show
using the definition of limit that p = limn→∞ pn. To this end, let ε > 0 be given. By hypothesis,
there exists N1 ∈ such that i ≥ N1 implies that d(pni , p) < ε/2. Also, since {pn} is Cauchy, there
exists N2 ∈ such that n, m ≥ N2 implies d(pn, pm) < ε/2. Now let N = max{N1, N2} and choose
i ≥ N . Then if n ≥ N , we have

d(pn, p) ≤ d(pn, pni) + d(pni , p) < ε/2 + ε/2 = ε.

Note that the bound on the first term in the middle comes from the fact that ni ≥ i ≥ N2, and the
bound on the second term comes from the fact that i ≥ N1.

Page 82, # 23. Let dn = d(pn, qn). Then we must show that the sequence {dn} ⊂ converges.
Since is complete, it will be enough to show this sequence is Cauchy. We prove this last fact
directly from the definition of Cauchy sequence.

Let ε > 0 be given. Then by hypothesis, there exists N1 ∈ such that d(pn, pm) < ε/2 for all
n, m ≥ N1. Similarly, we have N2 ∈ such that d(qn, qm) < ε/2 for all n, m ≥ N2. So taking
N = max{N1, N2} and arbitrary integers n, m ≥ N , we apply the triangle inequality (four times!)
to estimate

|dn − dm| = |d(pn, qn)− d(pm, qm)|
= |d(pn, qn)− d(pn, qm) + d(pn, qm)− d(pm, qm)|
≤ |d(pn, qn)− d(pn, qm)|+ |d(pn, qm)− d(pm, qm)|
≤ d(qn, qm) + d(pn, pm) < ε/2 + ε/2 = ε.

(To see what’s going on with the second last inequality, it helps to draw yourself a picture.) We
conclude that {dn} is Cauchy, which is what we needed to prove.


