Solutions to Homework 6

Supplementary problem 1. Prove directly from Definition 4.5 that the function $f:[0, \infty) \rightarrow$ $[0, \infty)$ given by $f(x)=\sqrt{x}$ is continuous at every point in its domain.

Solution. First consider the point 0. If $\epsilon>0$ is given, then take $\delta=\epsilon^{2}$. Then $|x|<\delta$ (and $x \in[0, \infty)$) implies that

$$
|\sqrt{x}-\sqrt{0}|=\sqrt{x}<\sqrt{\delta}=\epsilon .
$$

So f is continuous at the point 0 .
Now let $a \in(0, \infty)$ be some other point. If $\epsilon>0$ is given, set $\delta=\sqrt{a} \epsilon$. Then for any $x \in[0, \infty)$ such that $|x-a|<\delta$, we have

$$
|\sqrt{x}-\sqrt{a}|=\left|\frac{x-a}{\sqrt{x}+\sqrt{a}}\right| \leq \frac{|x-a|}{\sqrt{a}}<\frac{\delta}{\sqrt{a}}=\epsilon .
$$

So f is continuous at a. We conclude that f is continuous at every point in $[0, \infty)$.
Supplementary problem 2. Prove each item in Theorem 4.4 directly from Definition 4.1-i.e. do not use the corresponding facts about limits of sequences.
Part a. Let $\epsilon>0$ be given. By the hypotheses on f and g, we can choose $\delta_{1}, \delta_{2}>0$ so that for each $x \in E$,

- $0<d(x, p)<\delta_{1}$ implies that $|f(x)-A|<\epsilon / 2$;
- $0<d(x, p)<\delta_{2}$ implies that $|g(x)-B|<\epsilon / 2$.

Therefore let us set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. If $x \in E$ satisfies $0<d(x, p)<\delta$, then the triangle inequality gives

$$
|(f+g)(x)-(A+B)| \leq|f(x)-A|+|g(x)-B|<\epsilon / 2+\epsilon / 2=\epsilon
$$

Hence $\lim _{x \rightarrow p}(f+g)(x)=A+B$.
Part b. Let $\epsilon>0$ be given. By hypothesis on f and g, we can choose $\delta_{1}, \delta_{2}>0$ so that for each $x \in E$,

- $0<d(x, p)<\delta_{1}$ implies that $|f(x)-A|<\epsilon / 4|B|$;
- $0<d(x, p)<\delta_{2}$ implies that $|g(x)-B|<\min \{\epsilon / 2|A|,|B|\}$ (in particular, $|g(x)|<2|B|$).

Therefore let us set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. If $x \in E$ satisfies $0<d(x, p)<\delta$, then

$$
\begin{aligned}
|(f g)(x)-A B| & \leq|f(x) g(x)-A g(x)|+|A g(x)-A B|<2|B||f(x)-A|+|A||g(x)-B| \\
& <2|B| \frac{\epsilon}{4|B|}+|A| \frac{\epsilon}{2|A|}=\epsilon .
\end{aligned}
$$

Hence $\lim _{x \rightarrow p}(f g)(x)=A B$.

Part c. Let $\epsilon>0$ be given. By hypothesis on f and g, we can choose $\delta_{1}, \delta_{2}>0$ so that for each $x \in E$,

- $0<d(x, p)<\delta_{1}$ implies that $|f(x)-A|<|B| \epsilon / 4 ;$
- $0<d(x, p)<\delta_{2}$ implies that $|g(x)-B|<\min \left\{\epsilon,|B|^{2} \epsilon /|A|\right\}$ (in particular, $|g(x)|>|B| / 2$).

Therefore let us set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. If $x \in E$ satisfies $0<d(x, p)<\delta$, then

$$
\begin{aligned}
|(f / g)(x)-A / B| & =\left|\frac{f(x) B-A g(x)}{g(x) B}\right| \leq \frac{2}{|B|^{2}}|f(x) B-A g(x)| \\
& \leq \frac{2}{|B|^{2}}(|B||f(x)-A|+|A||g(x)-B|)<\frac{2}{|B|^{2}}\left(|B| \frac{|B| \epsilon}{4}+|A| \frac{|B|^{2} \epsilon}{4|A|}\right)=\epsilon .
\end{aligned}
$$

Hence $\lim _{x \rightarrow p}(f / g)(x)=A / B$.
Solution to \#2 on Page 98. By Theorem 3.2d in Rudin, we can choose a sequence $\left\{x_{n}\right\} \subset E$ converging to x (if $x \in E$, then we can take $x_{n}=x$ for all $n \in$). Then by continuity of f and Theorem 4.2, we see that

$$
f(x)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) .
$$

Since $f\left(x_{n}\right) \in f(E)$ by definition, we conclude that $f(x) \in \bar{E}$. And since $x \in \bar{E}$ was arbitrary, $f(\bar{E}) \subset \overline{f(E)}$.

To see that equality need not hold, consider $f: \rightarrow$ given by $f(x)=e^{x}$. Then $f(\bar{R})=f()=$ $(0, \infty) \neq \overline{(0, \infty)}=[0, \infty)$.

Solution to $\# \mathbf{6}$ on Page 98. Let $E \subset$ be compact, $f: E \rightarrow$ be a function on E, and $G=$ $\left\{(x, f(x)) \in^{2}: x \in E\right\}$ be the graph of f.

Suppose first that f is continuous. Then by Theorem 4.10a, so is the function $F: E \rightarrow^{2}$ given by $F(x)=(x, f(x))$. As E is compact, we conclude that $F(E)=G$ is compact, as well.

Now suppose instead that G is compact. Again by Theorem 4.10a, it is enough to show that the map F defined in the previous paragraph is continuous. To this end, let $K \subset^{2}$ be closed, and consider $F^{-1}(K)=F^{-1}(K \cap G)=\pi(K \cap G)$ where $\pi:^{2} \rightarrow$ is the continuous map $(x, y) \rightarrow x$. Now $K \cap G$ is a closed subset of a compact set and therefore compact. Hence $\pi(K \cap G)$ is compact and therefore closed. That is, the preimage of a closed set under F is closed, and F is therefore continuous. We conclude that f is continuous.

Solution to \#10 on Page 99. Suppose by way of contradiction that f is not uniformly continuous on X. That is, there exists $\epsilon>0$ such that for any $\delta>0$, we can find points $p, q \in X$ such that $d(p, q)<\delta$ while $d(f(p), f(q)) \geq \epsilon$. Let us fix this ϵ, and choose points $p=p_{n}, q=q_{n}$ as above for each δ of the form $1 / n, n \in$. In other words, for each natural number n, we have

$$
0<d\left(p_{n}, q_{n}\right)<1 / n, \quad d\left(f\left(p_{n}\right), f\left(q_{n}\right)\right) \geq \epsilon .
$$

In particular $\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)=0$.
Now since X is compact, we can apply Theorem 3.6a from Rudin to obtain a subsequence $\left\{p_{n_{k}}\right\} \subset\left\{p_{n}\right\}$ that converges to some point $p \in X$. On the other hand $\lim _{k \rightarrow \infty} d\left(p_{n_{k}}, q_{n_{k}}\right) \rightarrow 0$, so it follows that $\lim q_{n_{k}}=p$, too. Therefore by continuity

$$
\lim _{k \rightarrow \infty} f\left(p_{n_{k}}\right)=f(p)=\lim _{k \rightarrow \infty} f\left(q_{n_{k}}\right) .
$$

In particular,

$$
\lim _{k \rightarrow \infty} d\left(f\left(p_{n_{k}}\right), f\left(q_{n_{k}}\right)\right)=0
$$

This contradicts the fact that $d\left(f\left(p_{n_{k}}\right), f\left(q_{n_{k}}\right)\right) \geq \epsilon$ for all $k \in$. Therefore, it must be the case that we started on the wrong hypothetical foot and that f must be uniformly continuous on X after all.

Solution to \#14 on Page 100. Let $I=[a, b]$. If $f(a)=a$ or $f(b)=b$, we are already done, so we can assume (because $f(I) \subset I)$ that $f(a)>a$ and $f(b)<b$. Consider the function $g(x)=f(x)-x$, which is also continuous. Then by our assumptions, $g(a)>0$ and $g(b)<0$. So by the intermediate value theorem, there exists $x \in(a, b)$ such that $g(x)=0$-i.e. $f(x)=x$.

