Solutions to Homework 6

Supplementary problem 1. Prove directly from Definition 4.5 that the function f : [0,00) —
[0,00) given by f(z) = \/x is continuous at every point in its domain.

Solution. First consider the point 0. If € > 0 is given, then take § = ¢2. Then |z| < § (and
x € [0,00)) implies that

\f—\@|=\/§<\/5:e.

So f is continuous at the point 0.

Now let a € (0, 00) be some other point. If € > 0 is given, set § = y/ae. Then for any x € [0, 00)
such that |z — a| < §, we have
|z — al o

< —= = €.
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So f is continuous at a. We conclude that f is continuous at every point in [0, 00).
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Supplementary problem 2. Prove each item in Theorem 4.4 directly from Definition 4.1—i.e.
do not use the corresponding facts about limits of sequences.

Part a. Let € > 0 be given. By the hypotheses on f and g, we can choose d1,d2 > 0 so that for
each x € F,

e 0 <d(z,p) < 61 implies that |f(z) — A| < €/2;
e 0 < d(z,p) < 2 implies that |g(z) — B| < ¢/2.

Therefore let us set § = min{dy, d2}. If z € E satisfies 0 < d(z,p) < 0, then the triangle inequality
gives

((F+9)(@) = (A+ B)| < |f(z) — Al +|g(z) — Bl < €e/2+¢/2 =€
Hence lim,_.,(f + g)(x) = A+ B.

Part b. Let € > 0 be given. By hypothesis on f and g, we can choose §1,d2 > 0 so that for each
r el

e 0 < d(z,p) < 0; implies that |f(z) — A| < €¢/4|B];
e 0 < d(z,p) < 02 implies that |g(z) — B| < min{e/2|A|,|B|} (in particular, |g(x)| < 2|B|).
Therefore let us set § = min{dy,d2}. If x € F satisfies 0 < d(z,p) < J, then

((f9)(z) — AB| < |f(z)g(x) — Ag(z)| + [Ag(x) — AB| < 2|B||f(z) — A| + [Allg(x) — B

€ €
< 2Bl Tl

€.

Hence lim,_,,(fg)(x) = AB.



Part c. Let € > 0 be given. By hypothesis on f and g, we can choose d1,d2 > 0 so that for each
rekl,

e 0 <d(z,p) < 01 implies that |f(z) — A| < |Ble/4;
e 0 < d(x,p) < 0y implies that |g(z) — B| < min{e, |B|?¢/|A|} (in particular, |g(z)| > |B|/2).
Therefore let us set § = min{dy,d2}. If = € E satisfies 0 < d(z,p) < J, then

‘f(m)B — Ag(x)
g(z

(F/9)@) - A/B| = e

2
< (gl @B — Ag(x)

2 2 |Ble | B|%e
< —= - - = ¢
< EpUBIf@) - Al +|Allg@) BD<BPOE4>+MMM, ¢

Hence lim,_.,(f/g)(x) = A/B.

Solution to #2 on Page 98. By Theorem 3.2d in Rudin, we can choose a sequence {z,} C E
converging to x (if z € E, then we can take x,, = x for all n €). Then by continuity of f and
Theorem 4.2, we see that

f(z) = f(lim x,) = lim f(z,).

n—oo n—oo

Since f(z,) € f(E) by definition, we conclude that f(z) € E. And since * € E was arbitrary,
1(B) C J(B). B

To see that equality need not hold, consider f :— given by f(z) = €*. Then f(R) = f() =
(0,00) # (0,00) = [0, 00).

Solution to #6 on Page 98. Let E C be compact, f : E — be a function on F, and G =
{(z, f(z)) €% = € E} be the graph of f.

Suppose first that f is continuous. Then by Theorem 4.10a, so is the function F : E —?2 given
by F(x) = (x, f(x)). As E is compact, we conclude that F(E) = G is compact, as well.

Now suppose instead that G is compact. Again by Theorem 4.10a, it is enough to show that
the map F defined in the previous paragraph is continuous. To this end, let K C? be closed, and
consider F~Y(K) = F~Y(K NG) = n(K N G) where 7 :2>— is the continuous map (x,y) — z. Now
K NG is a closed subset of a compact set and therefore compact. Hence 7(K N G) is compact
and therefore closed. That is, the preimage of a closed set under F' is closed, and F' is therefore
continuous. We conclude that f is continuous.

Solution to #10 on Page 99. Suppose by way of contradiction that f is not uniformly continuous
on X. That is, there exists ¢ > 0 such that for any é > 0, we can find points p,q € X such that
d(p,q) < while d(f(p), f(q)) > €. Let us fix this €, and choose points p = p,, ¢ = ¢, as above for
each ¢ of the form 1/n, n €. In other words, for each natural number n, we have

0 < d(pn,qn) < 1/n, d(f(pn), f(qn)) > €

In particular lim, . d(pp, qn) = 0.

Now since X is compact, we can apply Theorem 3.6a from Rudin to obtain a subsequence
{pn,} C {pn} that converges to some point p € X. On the other hand limy_,~ d(pn,,qn,) — 0, so
it follows that lim ¢,, = p, too. Therefore by continuity

Jim f(pn,) = f(p) = Jim f(any)-



In particular,
lim d(f(pnk)a f(an)) =0

k—o00

This contradicts the fact that d(f(pn,), f(qn,)) > € for all k& €. Therefore, it must be the case that
we started on the wrong hypothetical foot and that f must be uniformly continuous on X after all.

Solution to #14 on Page 100. Let I = [a,b]. If f(a) = a or f(b) = b, we are already done, so we
can assume (because f(I) C I) that f(a) > a and f(b) < b. Consider the function g(z) = f(z) — =z,
which is also continuous. Then by our assumptions, g(a) > 0 and g(b) < 0. So by the intermediate
value theorem, there exists x € (a,b) such that g(x) = 0—i.e. f(z)=x.



