Homework Set 7: Solutions

Page 100, # 17, solution. Let x be a point at which f has a simple discontinuity. Then exactly
one of the following is true.

L fla+) < flz—);
2. fla+) > flz—);
3. flat) = fla—) < fl);
4. f(z+) = flz=) > f(z)

It will be enough to show that each of these things, taken separately, occurs at no more than
countably many values of x.

So let us first consider those x as in case (1). By the density property we can choose p € such
that f(z+) <p < f(z—). Then we set

e = min{f(z—) —p,p — f(z+)}
By definition of the left and right hand limits f(z—) and f(x+), there exists 0 > 0 so that
o r— 0 <t<uximplies |f(z) — f(z—)| < € (so, in particular, f(z) < f(z—) + € < p);
e r <t<ux+0 implies |f(x) — f(z+)| < € (so, in particular, f(x) > f(z+) — € > p).
Invoking the density property again, we can choose ¢, r € such that
r—0<qg<z<r<xz+§,

thereby associating to z a triple (p, ¢,r) €3 such that
e g<x <,
e f(t) <pforallte (gx),and
o f(t)>pforallte (z,r).

I claim now that if 2’ is another point at which f has a simple discontinuity of type (1), then (at
least one member of) the triple (p’, ¢, ') associated to 2’ differs from the triple (p, ¢,) associated
to x. To see this suppose that 2’ < x (the case x < 2’ is identical) but (p’,¢’,r") = (p,q,7). Then
q < <z <r, soiftis any point between x’ and z, we have f(t) > p because 2’ < t < r but
f(t) < p because ¢ < t < x. Since this is impossible, it must be the case that (p',¢,") # (p, q,7).

In summary we have defined an injective function from the set of points where f has a simple
discontinuity of type (1) into 3. Since the latter set is countable, we conclude that f has no more
than countably many simple discontinuities of type (1).

The case of simple discontinuities of type (2) is handled in a completely analogous fashion.
Dealing with simple discontinuities of type (3) differs only slightly in that we choose (p,q,r) €3
such that f(¢) < p for all t € (¢, z) U (x,r). Finally simple discontinuities of type (4) are dealt with
in the same way as those of type (3).



Page 101, # 23, solution. Beginning with a convex function f : (a,b) —, let us first prove that
go f is also convex whenever g : (¢,d) — is a convex increasing function whose domain includes
the range of f. If z < y and A € (0,1), then by definition of continuity, we have

fAz 4+ (1= Ny) <Af(z)+ (1= A)f(y).

Thus since g is increasing, we obtain

go f(Az+ (1= Ny) < g(Af(z)+ (1= N)f(y)).
Finally, applying the fact that g is convex to the right side of this inequality gives

go f(Ar+ (1 —Ny) < Ag(f(z)) + (1= Ng(f(y))-

We conclude that g o f is a convex function. Ta da!
Now we establish the ‘slope inequality’ given in the problem for f, because it will be useful in
proving that f is continuous. That is, if s < ¢ < u are numbers in (a,b), we will prove that

J(0) = 1) _ Fw) = F(5) _ fw) — (1)

t—s - uU—S - u—t

Since t is between s and u, there exists A € (0, 1) such that
t=As+(1— M\,
which implies that
t—s=(1=X)(u—s)

Moreover, by definition of convexity, we have

F@) <Af(s) + (1= N f(w),
which, after subtracting f(s) from both sides becomes

J(u) — f(s
£~ £(5) < (L= X (Fw) — F(s)) < (¢ — 9D =TC)
Dividing through by ¢t — s then gives the first inequality above. The proof of the second inequality
is similar. Cha-ching!

Now let = € (a,b) be any given point. We will show that f is continuous at xz. Note that by
the inequalities we just proved, the function

t—x
is increasing in t # x (verifying that m(t1) < m(te) for ¢; < t2 requires applying our inequality for
s < t < wu to each of the three cases © < t; < t9, t1 < x < t9, and z < t1 < t2).

So fix numbers A < z < B in (a,b). Then m(A) < m(t) < m(B) for all t € (A, B) not equal to
x. In particular, taking C' = max{|m(A)|,|m(B)|}, we see that |m(t)] < C for all t € (A, B). That
is,

[f(t) = f(@)] < CJt — =

Now if € > 0 is given, we take 6 = min{e/C,x — A, B — z}. Then 0 < |t — x| < § implies that

A <t < B, and therefore
|f(t) = f(@)]| < CJt —a[ <CF <e.

This shows that lim;_., f(t) = f(x)—i.e. f is continuous at x. As x is arbitrary f is continuous on
(a,b).



Page 114, # 6, solution. Since f is differentiable, so is g. We will show that ¢'(x) > 0 for every
x > 0. Then if 0 < 21 < z2, the mean value theorem gives us a number ¢ € (z1,x2) such that

g(x2) —g(x1) = g'(c)(x2 — 21) >0,

so that g is increasing, as desired.
° f'(@) = f(=)
zf'(x x
g (x) = 2 :

Moreover, another application of the mean value theorem gives us ¢ € (0, ) such that

But f’ is an increasing function, so

() < f'(x).

x
Rearranging this and using the fact that x > 0 gives

xf (95362 f(x) > 0.

We conclude that ¢'(z) > 0, and therefore g is increasing.

Page 114, # 9, solution. Yes, it does. Let {z,} C —{0} be any sequence of points converging to
0. The mean value theorem gives us a second sequence {c,} such that for every n €, ¢, is between
xn, and 0 (so by the Squeeze Theorem ¢, — 0) and

f($n)*f(0) ot
W = f'(en)-
It follows that
Jim B0 i 7o) =

Since the sequence {z,} was arbitrary, we conclude from Theorem 4.2 that

£1(0)  timg £@ = O

z—0 rz—0

=3.

Page 115, # 13abcd. Solution In all cases, it is only necessary to verify statements at x = 0
(or in part (c), in a neighborhood of x = 0).

(a) If a = 0, then we have already observed in class that lim,_,o f(x) does not exist, so f cannot
be continuous at x = 0. if a < 0, then f is not even bounded near 0, so f is not continuous at
z =0. If a > 0, on the other hand, then |f(x)| < |z|* — 0 as x — 0. So the squeeze theorem
implies that lim, .o f(z) = 0 = f(0), and f is continuous at 0.

(b) By definition of the derivative, we have
1'(0) = lin% 2% sin(z7¢)

which, as we observed in part (a), exists if and only if @ — 1 > 0.



(c) Note that by part (b) we must have a > 1. For z # 0, we have
f(z) = azx® sin(z7¢) + cx® ¢! cos(z7°).
The first term is bounded since a > 1, and the second is bounded if and only if a > ¢+ 1.

(d) This follows immediately from parts (a) (which works for the cosine as well as the sine function)

and (c).

Page 115, # 14. Solution Let f : (a,b) — be a differentiable a function. Supposing first that
/! is monotonically increasing, we will show that f is convex. Given numbers z < y in (a,b) and
A€ (0,1), let

z=Ax+ (1 - N)y.

Then the mean value theorem gives us ¢; € (z,2), c2 € (z,y) such that

f2) = f@)=fle)z—a),  fly) = f(2)=f(e)ly—2)

Rewriting z in terms of =, y, and A on the right sides of both equations, and using the fact that
f(c2) = f'(c1) gives
A(f(z) = f(2) < (A= N)(fy) — (),

which, upon solving for f(z), yields

f(2) S Af(2) + (1= A)f(y).

This shows that f is convex.

Now let us begin again supposing that f is convex, and trying to show that f’ is monotonically
increasing. That is, if 2 < y are two points in (a,b), we seek to prove that f'(x) < f'(y). To do
this let ¢ be any point strictly between x and y. Then our ‘slope inequality’ from page 101/# 23
tells us that

f(t) ~ f@) _ f) — f@) _ )~ 1)
t—x —  y—-xz - y—t
Letting t — z in the left and middle expressions gives
y—x
Letting t — y in the middle and right expressions gives
fly) — [z
fly) — f(@) < f'(y).
y—x

Combining the two inequalities gives f'(z) < f/(y), as desired.
Finally, if f” exists on (a,b), we note that f’ is increasing if and only if f”(z) > 0 at every z.
So by our work above, f is convex if and only if f” is non-negative on (a,b).

Page 116,# 19. Solution: For parts (a) and (b) it is useful to note that
fBr) = floam) _ f(Bn) = f(0)  Bn flan) = f(0)  an

Bn — an Bn—0 Bn — an an —0 Bn — an



Therefore, if we compare with the derivative of f at zero, we can use the fact that

/ gl Bn / Qn
110 = FO) 52— = P02
together with the triangle inequality to obtain
fBn) — flan) fBp) = f0) Bn flom) = f(O) o
Bn_an _f<0)‘s‘ ﬂn_o _f(O)‘ Bn_an +’ an_o _f<0)‘ ﬂn_an

Therefore if both {3, /(8n, — an)} and {a,/(6r — @)} are bounded, we conclude that
f(Bn) — flan)
Bn — «

n

lim — f’(O)’ = 0.
We now deal with parts (a) and (b) in light of this discussion.

(a) If ay, < 0 < By, then (3, — vy, is larger than both |3,| and |«,|. Hence,

Bn

Bn — o

Qn

<1
Bn — o

9

for every n €. It follows immediately, then, from the discussion above that

lim f(Bn) — flan)

n—0oo ﬁn — Qp

= 1'(0).

(b) By assumption, there exists C' € such that |5, /(8, — a,)| < C for all n €. Thus

Bn

ﬁn_an

an_ﬂn
ﬁn_an

Qn

ﬁn_an

<1+4C

for every n €. It therefore follows again from the discussion preceding part (a) that

lim f(Bn) — flan)

n—0oo Bn — Qp

~ £(0).

(b) By the mean value theorem, we have for every n € a number ¢, € (an, b,) such that

f(Bn) = flan)

ﬁn_an

f(en) =

Since an, b, — 0, it follows from the Squeeze Theorem that ¢, — 0. And since we are assuming
now that f’ is continuous at 0, we have

= liHOlo flen) = f,(nh_{go cn) = f(0),

as advertised.



Page 117,# 22abc. Solution:

(a) Suppose by way of contradiction that x < y are distinct fixed points of f. Then the mean value
theorem gives us ¢ € (z,y) such that
) -1 _y-z

floy=FE =0 = 7

contrary to our assumption that f’ is never equal to 1. Therefore, f has at most one fixed point.

(b) Setting f(t) = ¢ for this particular function f gives us that

which is impossible. Therefore, f has no fixed points. On the other hand

t
"t)=1—- ———.
Y (1+et)?
Moreover, since e! > 0 for every t €,
0 < et _ ef+1 1 1
(1+eh)2 ~(1+et)2  14et 7

That is, 1 > f/(¢t) > 0 for all ¢ €.

(c) Let x1 € be any point and {x, } be the sequence determined by setting x,+1 = f(x,) for every
n €. Then by the mean value theorem

[Znt1 — 2n| = | f(@n) = fl@n-1)| = [F(©)l|lzn — 2p-1]
for some ¢ between z,, and x,_1. In particular,
|Zn+1 — Tn| < Alzn — Tn-1],
where A is the constant given in the problem. Applying this inequality inductively gives
|Zpi1 — o] < AV Hag — 2]

We will use this to show that {z,,} is a Cauchy sequence. Let € > 0 be given and choose N € large
enough that % < €¢/C, where C := |zg — x1|. Then if m > n > N we have

m— m—1 m—1 n
| T — 20| = EZ: (Tj+1 — ) sz:: x]+1_x]]<CJE;1AJ<C;LAJ 1éA<€'

This proves that {z,} is a Cauchy sequence. Since is complete, we have = € such that lim x,, = .
Since f is continuous, we also have

flx) = f(lim z,) = lim f(z,) = hm Tyl = .

n—oo n—oo

So z is a fixed point for f. By part (a) there can be no other fixed point for f, so x does not depend
at all on our initial choice of z7

Alternative Proof (taken shamelessly from Jenista’s hwk): Note that by hypothesis, we
have

|f(z) — f(0)] < Alz — 0] = Alz|



for every x €. So suppose, for instance that f(0) > 0 (the case f(0) < 0 is similar, and if f(0) =0,
then 0 itself is the fixed point). Then the above inequality gives us for z > 0 that

flx) = f(0) < Az
(i.e. the graph of f stays below the line y = f(0) + Az which has slop less than 1). Therefore,
f@) =z < f0)+(A—-1)z

for z > 0. In particular, since A — 1 < 0, we have f(b) —b < 0 for b large. But f(z) — x is

continous and f(0) —0 > 0. So by the intermediate value theorem, there exists a € (0, b) such that

f(a) —a=0. We conclude that there exists a fixed point = a (which is unique by part (a)).
Now if & = 2 is some other point and x,,+1 = f(z,), we have

|Znt1 — al = [f(zn) — fa)] = [f'(O)]|zn — al
for some ¢ between x,, and a by the Mean Value Theorem. But this means that
|Tni1 —al < Alzy, —a| < ... < A"z — qf
for all n €. Since lim,, .o, A™ = 0, we conclude that

lim z, = lim z,4+1 = a.
n—oo n—oo



