Homework Set 7: Solutions

Page 100, \# 17, solution. Let x be a point at which f has a simple discontinuity. Then exactly one of the following is true.

1. $f(x+)<f(x-)$;
2. $f(x+)>f(x-)$;
3. $f(x+)=f(x-)<f(x)$;
4. $f(x+)=f(x-)>f(x)$.

It will be enough to show that each of these things, taken separately, occurs at no more than countably many values of x.

So let us first consider those x as in case (1). By the density property we can choose $p \in$ such that $f(x+)<p<f(x-)$. Then we set

$$
\epsilon=\min \{f(x-)-p, p-f(x+)\}
$$

By definition of the left and right hand limits $f(x-)$ and $f(x+)$, there exists $\delta>0$ so that

- $x-\delta<t<x$ implies $|f(x)-f(x-)|<\epsilon$ (so, in particular, $f(x)<f(x-)+\epsilon \leq p$);
- $x<t<x+\delta$ implies $|f(x)-f(x+)|<\epsilon$ (so, in particular, $f(x)>f(x+)-\epsilon \geq p$).

Invoking the density property again, we can choose $q, r \in$ such that

$$
x-\delta<q<x<r<x+\delta
$$

thereby associating to x a triple $(p, q, r) \in^{3}$ such that

- $q<x<r$,
- $f(t)<p$ for all $t \in(q, x)$, and
- $f(t)>p$ for all $t \in(x, r)$.

I claim now that if x^{\prime} is another point at which f has a simple discontinuity of type (1), then (at least one member of) the triple ($p^{\prime}, q^{\prime}, r^{\prime}$) associated to x^{\prime} differs from the triple (p, q, r) associated to x. To see this suppose that $x^{\prime}<x$ (the case $x<x^{\prime}$ is identical) but $\left(p^{\prime}, q^{\prime}, r^{\prime}\right)=(p, q, r)$. Then $q<x^{\prime}<x<r$, so if t is any point between x^{\prime} and x, we have $f(t)>p$ because $x^{\prime}<t<r$ but $f(t)<p$ because $q<t<x$. Since this is impossible, it must be the case that $\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \neq(p, q, r)$.

In summary we have defined an injective function from the set of points where f has a simple discontinuity of type (1) into ${ }^{3}$. Since the latter set is countable, we conclude that f has no more than countably many simple discontinuities of type (1).

The case of simple discontinuities of type (2) is handled in a completely analogous fashion. Dealing with simple discontinuities of type (3) differs only slightly in that we choose (p, q, r) \in^{3} such that $f(t)<p$ for all $t \in(q, x) \cup(x, r)$. Finally simple discontinuities of type (4) are dealt with in the same way as those of type (3).

Page 101, \# 23, solution. Beginning with a convex function $f:(a, b) \rightarrow$, let us first prove that $g \circ f$ is also convex whenever $g:(c, d) \rightarrow$ is a convex increasing function whose domain includes the range of f. If $x<y$ and $\lambda \in(0,1)$, then by definition of continuity, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Thus since g is increasing, we obtain

$$
g \circ f(\lambda x+(1-\lambda) y) \leq g(\lambda f(x)+(1-\lambda) f(y)) .
$$

Finally, applying the fact that g is convex to the right side of this inequality gives

$$
g \circ f(\lambda x+(1-\lambda) y) \leq \lambda g(f(x))+(1-\lambda) g(f(y)) .
$$

We conclude that $g \circ f$ is a convex function. Ta da!
Now we establish the 'slope inequality' given in the problem for f, because it will be useful in proving that f is continuous. That is, if $s<t<u$ are numbers in (a, b), we will prove that

$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(s)}{u-s} \leq \frac{f(u)-f(t)}{u-t}
$$

Since t is between s and u, there exists $\lambda \in(0,1)$ such that

$$
t=\lambda s+(1-\lambda) t
$$

which implies that

$$
t-s=(1-\lambda)(u-s)
$$

Moreover, by definition of convexity, we have

$$
f(t) \leq \lambda f(s)+(1-\lambda) f(u),
$$

which, after subtracting $f(s)$ from both sides becomes

$$
f(t)-f(s) \leq(1-\lambda)(f(u)-f(s)) \leq(t-s) \frac{f(u)-f(s)}{u-s} .
$$

Dividing through by $t-s$ then gives the first inequality above. The proof of the second inequality is similar. Cha-ching!

Now let $x \in(a, b)$ be any given point. We will show that f is continuous at x. Note that by the inequalities we just proved, the function

$$
m(t):=\frac{f(t)-f(x)}{t-x}
$$

is increasing in $t \neq x$ (verifying that $m\left(t_{1}\right) \leq m\left(t_{2}\right)$ for $t_{1}<t_{2}$ requires applying our inequality for $s<t<u$ to each of the three cases $x<t_{1}<t_{2}, t_{1}<x<t_{2}$, and $\left.x<t_{1}<t_{2}\right)$.

So fix numbers $A<x<B$ in (a, b). Then $m(A) \leq m(t) \leq m(B)$ for all $t \in(A, B)$ not equal to x. In particular, taking $C=\max \{|m(A)|,|m(B)|\}$, we see that $|m(t)| \leq C$ for all $t \in(A, B)$. That is,

$$
|f(t)-f(x)| \leq C|t-x| .
$$

Now if $\epsilon>0$ is given, we take $\delta=\min \{\epsilon / C, x-A, B-x\}$. Then $0<|t-x|<\delta$ implies that $A<t<B$, and therefore

$$
|f(t)-f(x)| \leq C|t-x|<C \delta \leq \epsilon
$$

This shows that $\lim _{t \rightarrow x} f(t)=f(x)$-i.e. f is continuous at x. As x is arbitrary f is continuous on (a, b).

Page 114, \# 6, solution. Since f is differentiable, so is g. We will show that $g^{\prime}(x) \geq 0$ for every $x>0$. Then if $0 \leq x_{1}<x_{2}$, the mean value theorem gives us a number $c \in\left(x_{1}, x_{2}\right)$ such that

$$
g\left(x_{2}\right)-g\left(x_{1}\right)=g^{\prime}(c)\left(x_{2}-x_{1}\right) \geq 0,
$$

so that g is increasing, as desired.
Now

$$
g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}} .
$$

Moreover, another application of the mean value theorem gives us $c \in(0, x)$ such that

$$
\frac{f(x)}{x}=\frac{f(x)-f(0)}{x-0}=f^{\prime}(c) .
$$

But f^{\prime} is an increasing function, so

$$
\frac{f(x)}{x} \leq f^{\prime}(x) .
$$

Rearranging this and using the fact that $x>0$ gives

$$
\frac{x f^{\prime}(x)-f(x)}{x^{2}} \geq 0 .
$$

We conclude that $g^{\prime}(x) \geq 0$, and therefore g is increasing.

Page 114, \# 9, solution. Yes, it does. Let $\left\{x_{n}\right\} \subset-\{0\}$ be any sequence of points converging to 0 . The mean value theorem gives us a second sequence $\left\{c_{n}\right\}$ such that for every $n \in, c_{n}$ is between x_{n} and 0 (so by the Squeeze Theorem $c_{n} \rightarrow 0$) and

$$
\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=f^{\prime}\left(c_{n}\right) .
$$

It follows that

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\lim _{n \rightarrow \infty} f^{\prime}\left(c_{n}\right)=3
$$

Since the sequence $\left\{x_{n}\right\}$ was arbitrary, we conclude from Theorem 4.2 that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=3 .
$$

Page 115, \# 13abcd. Solution In all cases, it is only necessary to verify statements at $x=0$ (or in part (c), in a neighborhood of $x=0$).
(a) If $a=0$, then we have already observed in class that $\lim _{x \rightarrow 0} f(x)$ does not exist, so f cannot be continuous at $x=0$. if $a<0$, then f is not even bounded near 0 , so f is not continuous at $x=0$. If $a>0$, on the other hand, then $|f(x)|<|x|^{a} \rightarrow 0$ as $x \rightarrow 0$. So the squeeze theorem implies that $\lim _{x \rightarrow 0} f(x)=0=f(0)$, and f is continuous at 0 .
(b) By definition of the derivative, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} x^{a-1} \sin \left(x^{-c}\right)
$$

which, as we observed in part (a), exists if and only if $a-1>0$.
(c) Note that by part (b) we must have $a>1$. For $x \neq 0$, we have

$$
f^{\prime}(x)=a x^{a-1} \sin \left(x^{-c}\right)+c x^{a-c-1} \cos \left(x^{-c}\right) .
$$

The first term is bounded since $a>1$, and the second is bounded if and only if $a \geq c+1$.
(d) This follows immediately from parts (a) (which works for the cosine as well as the sine function) and (c).

Page 115, \# 14. Solution Let $f:(a, b) \rightarrow$ be a differentiable a function. Supposing first that f^{\prime} is monotonically increasing, we will show that f is convex. Given numbers $x<y$ in (a, b) and $\lambda \in(0,1)$, let

$$
z=\lambda x+(1-\lambda) y .
$$

Then the mean value theorem gives us $c_{1} \in(x, z), c_{2} \in(z, y)$ such that

$$
f(z)-f(x)=f^{\prime}\left(c_{1}\right)(z-x), \quad f(y)-f(z)=f^{\prime}\left(c_{2}\right)(y-z)
$$

Rewriting z in terms of x, y, and λ on the right sides of both equations, and using the fact that $f^{\prime}\left(c_{2}\right) \geq f^{\prime}\left(c_{1}\right)$ gives

$$
\lambda(f(z)-f(x)) \leq(1-\lambda)(f(y)-f(z))
$$

which, upon solving for $f(z)$, yields

$$
f(z) \leq \lambda f(x)+(1-\lambda) f(y)
$$

This shows that f is convex.
Now let us begin again supposing that f is convex, and trying to show that f^{\prime} is monotonically increasing. That is, if $x<y$ are two points in (a, b), we seek to prove that $f^{\prime}(x) \leq f^{\prime}(y)$. To do this let t be any point strictly between x and y. Then our 'slope inequality' from page 101/\# 23 tells us that

$$
\frac{f(t)-f(x)}{t-x} \leq \frac{f(y)-f(x)}{y-x} \leq \frac{f(y)-f(t)}{y-t} .
$$

Letting $t \rightarrow x$ in the left and middle expressions gives

$$
f^{\prime}(x) \leq \frac{f(y)-f(x)}{y-x} .
$$

Letting $t \rightarrow y$ in the middle and right expressions gives

$$
\frac{f(y)-f(x)}{y-x} \leq f^{\prime}(y)
$$

Combining the two inequalities gives $f^{\prime}(x) \leq f^{\prime}(y)$, as desired.
Finally, if $f^{\prime \prime}$ exists on (a, b), we note that f^{\prime} is increasing if and only if $f^{\prime \prime}(x) \geq 0$ at every x. So by our work above, f is convex if and only if $f^{\prime \prime}$ is non-negative on (a, b).

Page 116,\# 19. Solution: For parts (a) and (b) it is useful to note that

$$
\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}=\frac{f\left(\beta_{n}\right)-f(0)}{\beta_{n}-0} \frac{\beta_{n}}{\beta_{n}-\alpha_{n}}-\frac{f\left(\alpha_{n}\right)-f(0)}{\alpha_{n}-0} \frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}
$$

Therefore, if we compare with the derivative of f at zero, we can use the fact that

$$
f^{\prime}(0)=f^{\prime}(0) \frac{\beta_{n}}{\beta_{n}-\alpha_{n}}-f^{\prime}(0) \frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}
$$

together with the triangle inequality to obtain

$$
\left|\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}-f^{\prime}(0)\right| \leq\left|\frac{f\left(\beta_{n}\right)-f(0)}{\beta_{n}-0}-f^{\prime}(0)\right|\left|\frac{\beta_{n}}{\beta_{n}-\alpha_{n}}\right|+\left|\frac{f\left(\alpha_{n}\right)-f(0)}{\alpha_{n}-0}-f^{\prime}(0)\right|\left|\frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}\right|
$$

Therefore if both $\left\{\beta_{n} /\left(\beta_{n}-\alpha_{n}\right)\right\}$ and $\left\{\alpha_{n} /\left(\beta_{n}-\alpha_{n}\right)\right\}$ are bounded, we conclude that

$$
\lim _{n \rightarrow \infty}\left|\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}-f^{\prime}(0)\right|=0 .
$$

We now deal with parts (a) and (b) in light of this discussion.
(a) If $\alpha_{n}<0<\beta_{n}$, then $\beta_{n}-\alpha_{n}$ is larger than both $\left|\beta_{n}\right|$ and $\left|\alpha_{n}\right|$. Hence,

$$
\left|\frac{\beta_{n}}{\beta_{n}-\alpha_{n}}\right|,\left|\frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}\right|<1
$$

for every $n \in$. It follows immediately, then, from the discussion above that

$$
\lim _{n \rightarrow \infty} \frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}=f^{\prime}(0) .
$$

(b) By assumption, there exists $C \in$ such that $\left|\beta_{n} /\left(\beta_{n}-\alpha_{n}\right)\right| \leq C$ for all $n \in$. Thus

$$
\left|\frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}\right| \leq\left|\frac{\alpha_{n}-\beta_{n}}{\beta_{n}-\alpha_{n}}\right|+\left|\frac{\beta_{n}}{\beta_{n}-\alpha_{n}}\right| \leq 1+C
$$

for every $n \in$. It therefore follows again from the discussion preceding part (a) that

$$
\lim _{n \rightarrow \infty} \frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}=f^{\prime}(0) .
$$

(b) By the mean value theorem, we have for every $n \in$ a number $c_{n} \in\left(a_{n}, b_{n}\right)$ such that

$$
f^{\prime}\left(c_{n}\right)=\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}
$$

Since $a_{n}, b_{n} \rightarrow 0$, it follows from the Squeeze Theorem that $c_{n} \rightarrow 0$. And since we are assuming now that f^{\prime} is continuous at 0 , we have

$$
\lim _{n \rightarrow \infty} \frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}=\lim _{n \rightarrow \infty} f^{\prime}\left(c_{n}\right)=f^{\prime}\left(\lim _{n \rightarrow \infty} c_{n}\right)=f^{\prime}(0)
$$

as advertised.

Page 117,\# 22abc. Solution:

(a) Suppose by way of contradiction that $x<y$ are distinct fixed points of f. Then the mean value theorem gives us $c \in(x, y)$ such that

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}=\frac{y-x}{y-x}=1
$$

contrary to our assumption that f^{\prime} is never equal to 1 . Therefore, f has at most one fixed point.
(b) Setting $f(t)=t$ for this particular function f gives us that

$$
e^{t}=-1,
$$

which is impossible. Therefore, f has no fixed points. On the other hand

$$
f^{\prime}(t)=1-\frac{e^{t}}{\left(1+e^{t}\right)^{2}} .
$$

Moreover, since $e^{t}>0$ for every $t \in$,

$$
0<\frac{e^{t}}{\left(1+e^{t}\right)^{2}}<\frac{e^{t}+1}{\left(1+e^{t}\right)^{2}}=\frac{1}{1+e^{t}}<1 .
$$

That is, $1>f^{\prime}(t)>0$ for all $t \in$.
(c) Let $x_{1} \in$ be any point and $\left\{x_{n}\right\}$ be the sequence determined by setting $x_{n+1}=f\left(x_{n}\right)$ for every $n \in$. Then by the mean value theorem

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right|=\left|f^{\prime}(c)\right|\left|x_{n}-x_{n-1}\right|
$$

for some c between x_{n} and x_{n-1}. In particular,

$$
\left|x_{n+1}-x_{n}\right| \leq A\left|x_{n}-x_{n-1}\right|,
$$

where A is the constant given in the problem. Applying this inequality inductively gives

$$
\left|x_{n+1}-x_{n}\right| \leq A^{n-1}\left|x_{2}-x_{1}\right| .
$$

We will use this to show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Let $\epsilon>0$ be given and choose $N \in$ large enough that $\frac{A^{N}}{1-A}<\epsilon / C$, where $C:=\left|x_{2}-x_{1}\right|$. Then if $m>n \geq N$ we have

$$
\left|x_{m}-x_{n}\right|=\left|\sum_{j=n}^{m-1}\left(x_{j+1}-x_{j}\right)\right| \leq \sum_{j=n}^{m-1}\left|x_{j+1}-x_{j}\right| \leq C \sum_{j=n}^{m-1} A^{j} \leq C \sum_{j=n}^{\infty} A^{j}=C \frac{A^{n}}{1-A}<\epsilon .
$$

This proves that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since is complete, we have $x \in \operatorname{such}$ that $\lim x_{n}=x$. Since f is continuous, we also have

$$
f(x)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x .
$$

So x is a fixed point for f. By part (a) there can be no other fixed point for f, so x does not depend at all on our initial choice of x_{1}

Alternative Proof (taken shamelessly from Jenista's hwk): Note that by hypothesis, we have

$$
|f(x)-f(0)| \leq A|x-0|=A|x|
$$

for every $x \in$. So suppose, for instance that $f(0)>0$ (the case $f(0)<0$ is similar, and if $f(0)=0$, then 0 itself is the fixed point). Then the above inequality gives us for $x>0$ that

$$
f(x)-f(0) \leq A x
$$

(i.e. the graph of f stays below the line $y=f(0)+A x$ which has slop less than 1). Therefore,

$$
f(x)-x \leq f(0)+(A-1) x
$$

for $x>0$. In particular, since $A-1<0$, we have $f(b)-b<0$ for b large. But $f(x)-x$ is continous and $f(0)-0>0$. So by the intermediate value theorem, there exists $a \in(0, b)$ such that $f(a)-a=0$. We conclude that there exists a fixed point $x=a$ (which is unique by part (a)).

Now if $x=x_{1}$ is some other point and $x_{n+1}=f\left(x_{n}\right)$, we have

$$
\left|x_{n+1}-a\right|=\left|f\left(x_{n}\right)-f(a)\right|=\left|f^{\prime}(c)\right|\left|x_{n}-a\right|
$$

for some c between x_{n} and a by the Mean Value Theorem. But this means that

$$
\left|x_{n+1}-a\right| \leq A\left|x_{n}-a\right| \leq \ldots \leq A^{n}\left|x_{1}-a\right|
$$

for all $n \in$. Since $\lim _{n \rightarrow \infty} A^{n}=0$, we conclude that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=a
$$

