Solutions to Homework 8

Supplementary problem 1. Let € > 0 be given. Proving that the conclusion holds is equivalent
to constructing a partition P of [a, b] for which

U(P,f)— L(P, f) < e.

Let M be an upper bound for |f| on [a,b]. By hypothesis we can find mutually disjoint open
intervals I;, j = 1,...,n covering the set S of discontinuities of f such that

|Il| + ...+ |In| < 6/2M

Let us write I; = (a;,bj). By putting the intervals in order (and intersecting them with [a, b], if
necessary) we can suppose that

a<ag<bh <a<b<...<a,<b,<bh

so that @ = {a,a1,b1,...,an,by,b} is a (not very well labeled!) partition of [a, b].

For convenience, let us define by = a, ap+1 = b. Then the condition S C I; U...U I, means
that f is continuous on the closed intervals [bj, a;41] for 0 < j < n. Therefore f is integrable on
each of these intervals, and we can choose a partition P; of [b;, a;41] such that

€
UP;,f)—L(Pj, f) < ——.

Now we define our partition P to be the union of the P;, j = 1,...,n (note in particular that
@) C P, since every point in @ is the endpoint of one the partitions P;). Then using the upper
bound M for |f| chosen above, we can estimate

UP,f) < U, )+ My —a1) +U(Pr, f) + M(by — az) + ... + M(by — an) + U(Py, f)
L(P,f) = L(P,f) = M(by—a1)+ L(Py, f) = M(by — az) + ... = M(bp — an) + L(Pn, ).
Therefore
U(P.f) = L(P.J) < D U(P;, f) = LBy, ) +2M 3" (b = ax) < (n 1) g +2M o =

7=0 k=1

Supplementary problem 2. Given ¢ > 0, we again seek to construct a partition P of [0, 1]
satisfying

This time, however, we let

S={zel0,1]: f(x) > €/2}.

I claim that there are only finitely many points in S. Indeed any x € S is rational, and can be
written x = p/q where ged(p, q) = 1 and ¢ < 2/e (since f(z) = 1/q). Soif N € exceeds 2/¢, then the
denominator ¢ is « can only range from 1 to N. Moreover, for fixed denominator ¢, the numerator
of x must range between 0 and ¢. So all told, S contains at most Zflvzl(q +1)=(¢+1)(g+2)/2
elements.



Clearly then, we can cover S with disjoint open intervals I; = (a;,b;), j = 1,...,n = #S such
that >, bj —a; < ¢/2. Putting the intervals in order and intersecting them with [0, 1] we obtain
a partition P of [0, 1] consisting of the points

azal<61§a2<b2§...§an<bn:b.

Since 0 < f(z) <1 for all z, we have

n

n—1
0<LPf)<U(p, )<Y by —aj) + > €e/2(ajp1 — b).
7=1 Jj=1

The first sum is equal to the sum of the lengths of the intervals I; and the second is no larger than
€/2 times the length of the full interval [0, 1]. Hence

UP, f)—L(P, f) <e

and we conclude that f is integrable.

Supplementary problem 3.

Part a. Let P ={n,n+1,...,m,m + 1} be the partition of [n,m + 1] by integers. Then since f
is decreasing, we have a; = sup{f(z): x € [k, k + 1]}, and

/mﬂf( Ydx <U(P, f) = Zak

Similarly, using the partition P = {n — 1,n,...,m} of [n — 1,m] we obtain
/ fl@)dz > L(P,f) =) a.
n—1 k—n

Part b. Since the series consists of non-negative terms, it’s enough to show that the partial sums s,
are bounded above uniformly in n. The function f(z) = 1/z(logz)? is non-negative and decreasing,
and a,, = f(n) for all n €, so we can use the previous item to estimate

s a—i—Za /1d:1:—a+1—1<a+1
n= A2 kS 9 log x)? - log2 logn — 2 log 2

for all n €. Since the right side is independent of n, the series converges.

Part c. The difference between the full series s and a given partial sum s, can be estimated as
follows.

1
S—Snzrgi_r}loosm—snﬁ hm/ flx log(n—l)

So for s, to approximate s to within .01 it is sufficient that 1/log(n — 1) < .01. That is, we need
n>1+e'00 ~ 2.68812 x 10",

Assuming we had a computer capable of evaluating and adding a trillion terms a second, we’d have
to wait about

2.68812 x 10*'seconds ~ 3.11125 x 10%%days ~ 8.5 x 10%years



to find out what the partial sum is. But really, these days, who’s got a mole of years to kill anyhow?

Part d. The first part of this problem also gives us that

m—+1 1
$—8, = lim s, —s, > lim f(z)dx = )
M—00 n=oo [, logn
So to summarize, we have
1
<s< _
on t logn =~ =°n + log(n — 1)
This means that if we choose n large enough that
1 1
< .01

log(n—1) logn

we can compute s, exactly and then replace the sum of the remaining terms by 1/logn, knowing
that this will be skewing the result by no more than .01. We could determine our n by trial and
error, but with the mean value theorem we can do better. That is, the derivative of the function
1/logz is —1/x(logz)? (why is this not a surprise?), so the mean value theorem gives us a number
¢ between n — 1 and n such that

1 1 1 1

log(n —1) logn L c(log c)? = n(logn)?’
and the latter quantity will certainly be less than .01 when n = 100. In fact, since log 25 > 2, we
can even see that n = 25 will suffice. A little further playing around with a calculator reveals that
15 is the largest value of n for which 1/n(logn)? < .01. So with the help of mathematica, I now
estimate
oo

1
2.114 2.124
< Tog 15 Z K logk kz:: k(log k)2 log 14 Z klog k)2 ©

Solution to #7 on Page 138. Part a. If f is already integrable on [0, 1], then by definition f

is bounded. Let M € be an upper bound for |f| on [0, 1]. Then by Theorem 6.12 parts (c) and (d),
we have for ¢ € [0, 1] that

1
:v)dx—/ flx)dx| = x)dx| < Me.
So if € > 0 is given and 0 < ¢ < ¢ := ¢/M, we have
1
:U)d:c—/ f(z)dz| < M§ =e.

Thus
hm f ) dx = / f(z
In other words, the two definitions of mtegral for f coincide.

Part b. Consider the function f : [0, 1] — defined as follows. For eachn €™ and z € (1/(n+1),1/n],
we set f(z) =n if n is even and —n if n is odd. Then

1 =1
1 = - =
1m/ (@)l dz = (n n—i—l) T;n—i—l




which diverges, but

which converges.

lim
c—0

. 00
/C f(x)de = ;(—1)% (

1

n

1
n—+1
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(1)
n+1




