Solutions to Homework 8

Supplementary problem 1. Let $\epsilon>0$ be given. Proving that the conclusion holds is equivalent to constructing a partition P of $[a, b]$ for which

$$
U(P, f)-L(P, f)<\epsilon
$$

Let M be an upper bound for $|f|$ on $[a, b]$. By hypothesis we can find mutually disjoint open intervals $I_{j}, j=1, \ldots, n$ covering the set S of discontinuities of f such that

$$
\left|I_{1}\right|+\ldots+\left|I_{n}\right|<\epsilon / 2 M
$$

Let us write $I_{j}=\left(a_{j}, b_{j}\right)$. By putting the intervals in order (and intersecting them with $[a, b]$, if necessary) we can suppose that

$$
a \leq a_{1}<b_{1} \leq a_{2}<b_{2} \leq \ldots \leq a_{n}<b_{n} \leq b .
$$

so that $Q=\left\{a, a_{1}, b_{1}, \ldots, a_{n}, b_{n}, b\right\}$ is a (not very well labeled!) partition of $[a, b]$.
For convenience, let us define $b_{0}=a, a_{n+1}=b$. Then the condition $S \subset I_{1} \cup \ldots \cup I_{n}$ means that f is continuous on the closed intervals $\left[b_{j}, a_{j+1}\right]$ for $0 \leq j \leq n$. Therefore f is integrable on each of these intervals, and we can choose a partition P_{j} of $\left[b_{j}, a_{j+1}\right]$ such that

$$
U\left(P_{j}, f\right)-L\left(P_{j}, f\right)<\frac{\epsilon}{2(n+1)} .
$$

Now we define our partition P to be the union of the $P_{j}, j=1, \ldots, n$ (note in particular that $Q \subset P$, since every point in Q is the endpoint of one the partitions P_{j}). Then using the upper bound M for $|f|$ chosen above, we can estimate

$$
\begin{aligned}
U(P, f) & \leq U\left(P_{0}, f\right)+M\left(b_{1}-a_{1}\right)+U\left(P_{1}, f\right)+M\left(b_{2}-a_{2}\right)+\ldots+M\left(b_{n}-a_{n}\right)+U\left(P_{n}, f\right) \\
L(P, f) & \geq L\left(P_{0}, f\right)-M\left(b_{1}-a_{1}\right)+L\left(P_{1}, f\right)-M\left(b_{2}-a_{2}\right)+\ldots-M\left(b_{n}-a_{n}\right)+L\left(P_{n}, f\right) .
\end{aligned}
$$

Therefore

$$
U(P, f)-L(P, f) \leq \sum_{j=0}^{n} U\left(P_{j}, f\right)-L\left(P_{j}, f\right)+2 M \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<(n+1) \frac{\epsilon}{2 n+1}+2 M \frac{\epsilon}{4 M}=\epsilon .
$$

Supplementary problem 2. Given $\epsilon>0$, we again seek to construct a partition P of $[0,1]$ satisfying

$$
U(P, f)-L(P, f)<\epsilon
$$

This time, however, we let

$$
S=\{x \in[0,1]: f(x) \geq \epsilon / 2\} .
$$

I claim that there are only finitely many points in S. Indeed any $x \in S$ is rational, and can be written $x=p / q$ where $\operatorname{gcd}(p, q)=1$ and $q \leq 2 / \epsilon($ since $f(x)=1 / q)$. So if $N \in$ exceeds $2 / \epsilon$, then the denominator q is x can only range from 1 to N. Moreover, for fixed denominator q, the numerator of x must range between 0 and q. So all told, S contains at most $\sum_{q=1}^{N}(q+1)=(q+1)(q+2) / 2$ elements.

Clearly then, we can cover S with disjoint open intervals $I_{j}=\left(a_{j}, b_{j}\right), j=1, \ldots, n:=\# S$ such that $\sum_{j=1}^{n} b_{j}-a_{j}<\epsilon / 2$. Putting the intervals in order and intersecting them with $[0,1]$ we obtain a partition P of $[0,1]$ consisting of the points

$$
a=a_{1}<b_{1} \leq a_{2}<b_{2} \leq \ldots \leq a_{n}<b_{n}=b .
$$

Since $0 \leq f(x) \leq 1$ for all x, we have

$$
0 \leq L(P, f) \leq U(p, f) \leq \sum_{j=1}^{n} 1\left(b_{j}-a_{j}\right)+\sum_{j=1}^{n-1} \epsilon / 2\left(a_{j+1}-b_{j}\right) .
$$

The first sum is equal to the sum of the lengths of the intervals I_{j} and the second is no larger than $\epsilon / 2$ times the length of the full interval $[0,1]$. Hence

$$
U(P, f)-L(P, f)<\epsilon
$$

and we conclude that f is integrable.

Supplementary problem 3.

Part a. Let $P=\{n, n+1, \ldots, m, m+1\}$ be the partition of $[n, m+1]$ by integers. Then since f is decreasing, we have $a_{k}=\sup \{f(x): x \in[k, k+1]\}$, and

$$
\int_{n}^{m+1} f(x) d x \leq U(P, f)=\sum_{k=n}^{m} a_{k}
$$

Similarly, using the partition $P=\{n-1, n, \ldots, m\}$ of $[n-1, m]$ we obtain

$$
\int_{n-1}^{m} f(x) d x \geq L(P, f)=\sum_{k=n}^{m} a_{k}
$$

Part b. Since the series consists of non-negative terms, it's enough to show that the partial sums s_{n} are bounded above uniformly in n. The function $f(x)=1 / x(\log x)^{2}$ is non-negative and decreasing, and $a_{n}=f(n)$ for all $n \in$, so we can use the previous item to estimate

$$
s_{n}=a_{2}+\sum_{k=3}^{n} a_{k} \leq \int_{2}^{n} \frac{1}{x(\log x)^{2}} d x=a_{2}+\frac{1}{\log 2}-\frac{1}{\log n} \leq a_{2}+\frac{1}{\log 2}
$$

for all $n \in$. Since the right side is independent of n, the series converges.
Part c. The difference between the full series s and a given partial sum s_{n} can be estimated as follows.

$$
s-s_{n}=\lim _{m \rightarrow \infty} s_{m}-s_{n} \leq \lim _{n \rightarrow \infty} \int_{n-1}^{m} f(x) d x=\frac{1}{\log (n-1)}
$$

So for s_{n} to approximate s to within .01 it is sufficient that $1 / \log (n-1)<.01$. That is, we need

$$
n \geq 1+e^{1} 00 \approx 2.68812 \times 10^{43} .
$$

Assuming we had a computer capable of evaluating and adding a trillion terms a second, we'd have to wait about

$$
2.68812 \times 10^{31} \text { seconds } \approx 3.11125 \times 10^{26} \text { days } \approx 8.5 \times 10^{23} \text { years }
$$

to find out what the partial sum is. But really, these days, who's got a mole of years to kill anyhow?
Part d. The first part of this problem also gives us that

$$
s-s_{n}=\lim _{m \rightarrow \infty} s_{m}-s_{n} \geq \lim _{n \rightarrow \infty} \int_{n}^{m+1} f(x) d x=\frac{1}{\log n}
$$

So to summarize, we have

$$
s_{n}+\frac{1}{\log n} \leq s \leq s_{n}+\frac{1}{\log (n-1)}
$$

This means that if we choose n large enough that

$$
\frac{1}{\log (n-1)}-\frac{1}{\log n}<.01
$$

we can compute s_{n} exactly and then replace the sum of the remaining terms by $1 / \log n$, knowing that this will be skewing the result by no more than .01 . We could determine our n by trial and error, but with the mean value theorem we can do better. That is, the derivative of the function $1 / \log x$ is $-1 / x(\log x)^{2}$ (why is this not a surprise?), so the mean value theorem gives us a number c between $n-1$ and n such that

$$
\frac{1}{\log (n-1)}-\frac{1}{\log n}=1 \cdot \frac{1}{c(\log c)^{2}} \leq \frac{1}{n(\log n)^{2}}
$$

and the latter quantity will certainly be less than .01 when $n=100$. In fact, since $\log 25>2$, we can even see that $n=25$ will suffice. A little further playing around with a calculator reveals that 15 is the largest value of n for which $1 / n(\log n)^{2}<.01$. So with the help of mathematica, I now estimate

$$
2.114<\frac{1}{\log 15}+\sum_{k=2}^{15} \frac{1}{k(\log k)^{2}} \leq \sum_{k=2}^{\infty} \frac{1}{k(\log k)^{2}} \leq \frac{1}{\log 14}+\sum_{k=2}^{15} \frac{1}{k(\log k)^{2}}<2.124
$$

Solution to \#7 on Page 138. Part a. If f is already integrable on $[0,1]$, then by definition f is bounded. Let $M \in$ be an upper bound for $|f|$ on $[0,1]$. Then by Theorem 6.12 parts (c) and (d), we have for $c \in[0,1]$ that

$$
\left|\int_{0}^{1} f(x) d x-\int_{c}^{1} f(x) d x\right|=\left|\int_{0}^{c} f(x) d x\right| \leq M c
$$

So if $\epsilon>0$ is given and $0<c<\delta:=\epsilon / M$, we have

$$
\left|\int_{0}^{1} f(x) d x-\int_{c}^{1} f(x) d x\right|<M \delta=\epsilon .
$$

Thus

$$
\lim _{c \rightarrow 0} \int_{c}^{1} f(x) d x=\int_{0}^{1} f(x) d x
$$

In other words, the two definitions of integral for f coincide.
Part b. Consider the function $f:[0,1] \rightarrow$ defined as follows. For each $n \in{ }^{+}$and $x \in(1 /(n+1), 1 / n]$, we set $f(x)=n$ if n is even and $-n$ if n is odd. Then

$$
\lim _{c \rightarrow 0} \int_{c}^{1}|f(x)| d x=\sum_{n=1}^{\infty} n\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=1}^{\infty} \frac{1}{n+1}
$$

which diverges, but

$$
\lim _{c \rightarrow 0} \int_{c}^{1} f(x) d x=\sum_{n=1}^{\infty}(-1)^{n} n\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}
$$

which converges.

