Solutions to Homework 9

Supplementary problem 1. (Leftover differentiation problem) Suppose that $f:(a, b) \rightarrow$ is a convex function that is differentiable at every $x \in(a, b)$. Show that f^{\prime} is continuous. (Hint: you can, of course, use the results of previous homework problems about convexity; moreover, there is a theorem in the book that makes this problem much easier-for once, it is not the mean value theorem or the chain rule.)

Solution. Since f is convex, $f^{\prime}:(a, b) \rightarrow$ is an increasing function. Suppose for the sake of obtaining a contradiction that f^{\prime} fails to be continuous at $x \in(a, b)$. Then by Theorem 4.29, the left and right hand limits of f^{\prime} exist at x, and

$$
f^{\prime}(x-)=\sup _{y<x} f(y) \leq f(x) \leq \inf _{z>x} f^{\prime}(z)=f^{\prime}(x+) .
$$

As we are assuming that f^{\prime} is discontinuous at x, one of the inequalities in this display must be strict-without loss of generality, let us suppose that $f^{\prime}(x-)<f^{\prime}(x)$.

Therefore, for any $y \in(a, x)$ and any $t \in\left(f^{\prime}(x-), f^{\prime}(x)\right)$ we have

$$
f^{\prime}(y)<t<f^{\prime}(x) .
$$

But f is differentiable at every point in (a, b), so by Theorem 5.12 there exists $s \in(y, x)$ such that $f^{\prime}(s)=a$. But $s<x$ also implies that $f^{\prime}(s)<f^{\prime}(x-)$ so that $f^{\prime}(s)<a$, too-a contradiction. We conclude that f^{\prime} is continuous at x after all.

Supplementary problem 2 The function $1 / t$ is continuous on $(0, \infty)$. Therefore the function

$$
f(x)=\int_{1}^{x} \frac{d t}{t}
$$

is well-defined for all $x \in(0, \infty)$. Prove each of the following about f.

- f is differentiable at every point and strictly increasing.

Proof. By the fundamental theorem of calculus (6.20), $f^{\prime}(x)=1 / x$ for every $x \in(0, \infty)$, so f is differentiable at every point. Moreover, for every $0<x_{1}<x_{2}$, the mean value theorem gives us $c \in\left(x_{1}, x_{2}\right)$ such that

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)=\frac{x_{2}-x_{1}}{c}>0 .
$$

So f is a strictly increasing function.

- $f(x y)=f(x)+f(y)$ for every $x, y \in(0, \infty)$.

Proof. Fix any $y \in(0, \infty)$ and set $g(x)=f(x y)-(f(x)+f(y))$. Then by the first part of this problem and the chain rule, we have

$$
g^{\prime}(x)=y f^{\prime}(x y)-f^{\prime}(x)=1 / x-1 / x=0 .
$$

for every $x \in(0, \infty)$. Moreover, $g(1)=f(y)-f(1)-f(y)=0$ since $\int_{1}^{1} d t / t=0$.
So if $x \in(0, \infty)$, the mean value theorem gives us c between 1 and x such that

$$
g(x)=g(x)-g(1)=g^{\prime}(c)(x-1)=0 .
$$

That is, $f(x y)-(f(x)+f(y))=0$ for all $x, y \in(0, \infty)$.

- $f\left(x^{t}\right)=t f(x)$ for all $t \in, x \in(0, \infty)$. Remember the problem from the first chapter in which x^{t} was defined for any real t - the idea was to do it first for $t \in$, then for $t \in$, and then, using supremums, for $t \in$.

Proof. For $t=k \in$, we have

$$
f\left(x^{k}\right)=f(x \cdot x \cdot \ldots x)=f(x)+f(x)+\cdots+f(x)=k f(x),
$$

by repeated application of the second part of this problem. Now suppose that $t=1 / k$ for some non-zero $k \in$. Then $\left(x^{t}\right)^{k}=x$, so by the previous display $f(x)=k f\left(x^{t}\right)$. In other words

$$
f\left(x^{t}\right)=\frac{1}{k} f(x)=t f(x)
$$

once again. Now if $t=p / q$ is an arbitrary rational number, we have

$$
\left.f\left(x^{t}\right)=f\left(x^{(} p / q\right)\right)=p f\left(x^{1 / q}\right)=p / q f(x)=t f(x),
$$

yet again. Now if $t \in(0, \infty)$ is irrational, we have (from page 22: 6c) by definition that

$$
\begin{aligned}
f\left(x^{t}\right) & =f\left(\sup \left\{x^{s}: s \in, s<t\right\}\right)=\sup \left\{f\left(x^{s}\right): s \in, s<t\right\} \\
& =\sup \{s f(x): s \in, s<t\}=t f(x)
\end{aligned}
$$

Note that we are allowed to move the supremum past f because f is continuous (so $f\left(x^{t}\right)=$ $f\left(x^{t}+\right)$) and increasing (so $f\left(x^{t}+\right)=\sup _{s<t} f\left(x^{s}\right)$).
Finally, we consider negative values of t. By the second part of this problem we have

$$
0=f(1)=f\left(x \cdot x^{-1}\right)=f(x)+f\left(x^{-1}\right)
$$

for any $x \in(0, \infty)$-i.e. the statement is true for $t=-1$. So for arbitrary $t<0$, we have

$$
f\left(x^{t}\right)=-f\left(x^{-t}\right)=-(-t) f(x)=t f(x)
$$

since $-t>0$. This concludes the proof.

- $f(0, \infty)=$. In particular, there is a unique number $d \in(1, \infty)$ such that $f(d)=1$.

Proof. First note that $f(2)=\int_{1}^{2} d t / t>0$ since $1 / t>0$ for all $t \in[1,2]$. Therefore, if $y \in$ is given, we have $f\left(2^{k}\right)=k f(2)>y>-k f(2)=f\left(2^{-k}\right)$ for $k \in$ large enough. But f is continuous (because f is differentiable), so the intermediate value theorem gives us a point $x \in\left(2^{-k}, 2^{k}\right)$ such that $f(x)=y$. That is, y belongs to the range of f. As y was arbitrary, the range of f is all of .
In particular, we have $f(d)=1$ for some $d>1$. And d is unique because f is strictly increasing: $f\left(d^{\prime}\right)>1$ for all $d^{\prime}>d$ and $f\left(d^{\prime}\right)<1$ for all $d^{\prime}<d$.

- f is an invertible function and that $f^{-1}(y)=d^{y}$ for all $y \in$.

Proof. Since f is strictly increasing, f is injective. Together with the previous part of this problem, this tells us that $f:(0, \infty) \rightarrow$ is a bijection and therefore invertible. Let $g: \rightarrow(0, \infty)$ be the inverse function. Then

$$
f(g(t))=t=t \cdot 1=t f(d)=f\left(d^{t}\right)
$$

for all $t \in$. And since f is injective, this implies that

$$
g(t)=d^{t}
$$

for all $t \in$.

Solution to \#10abc on Page 138.

Part a. If $v=0$, the inequality is trivial, so fix $v>0$. Consider the function $h:[0, \infty) \rightarrow$ given by

$$
h(t)=\frac{t^{p}}{p}-t v+\frac{v^{q}}{q} .
$$

We will be done if we can show that h is non-negative. So suppose $h(t)<0$ for some $t \in[0, \infty)$. Since $h(0)=v^{q} / q \geq 0$ and $\lim _{t \rightarrow \infty} h(t)=\infty$, this means that there exists $x \in$ such that $h(s)<0$ and $h(s) \leq h(t)$ for all $t \in[0, \infty)$. In particular

$$
0=h^{\prime}(s)=s^{p-1}-v,
$$

so $s=v^{1 /(p-1)}=v^{q / p}$ (since $1 / p+1 / q=1$). Plugging this value of s back into h gives

$$
h(s)=\frac{v^{q}}{p}-v^{q / p+1}+\frac{v^{q}}{q}=v^{q}-v^{q}=0 .
$$

So in fact the minimum value of h is no less than 0 , and it follows that $h(t) \geq 0$ for all $t \in[0, \infty)$. That is,

$$
\frac{t^{p}}{p}+\frac{v^{q}}{q} \geq t v
$$

for all $t, v \in[0, \infty)$.
Finally, note that the above work shows that $h(t)$ is minimal and equal to zero if and only if $t=v^{q / p}$ i.e. if and only if $t^{p}=v^{q}$.

Part b. For every $x \in[a, b]$ we have

$$
\frac{f(x)^{p}}{p}+\frac{g(x)^{q}}{q} \geq f(x) g(x) .
$$

by part (a). Theorem 6.12b therefore implies that

$$
\int_{a}^{b} f(x) g(x) d x \leq \int_{a}^{b} \frac{f(x)^{p}}{p} d x+\int_{a}^{b} \frac{g(x)^{q}}{q} d x=\frac{1}{p}+\frac{1}{q}=1 .
$$

Part c. Let I_{1} and I_{2} denote the integrals of $|f|^{p}$ and $|g|^{q}$, respectively, on $[a, b]$. Then

$$
\int_{a}^{b}\left(\frac{|f|}{I_{1}^{1 / p}}\right)^{p} d x, \int_{a}^{b}\left(\frac{|g|}{I_{1}^{1 / q}}\right)^{q} d x=1
$$

So we can apply part (b):

$$
\int_{a}^{b} \frac{|f(x)|}{I_{1}^{1 / p}} \frac{|g(x)|}{I_{2}^{1 / q}} d x \leq 1
$$

which rearranges to give

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq \int_{a}^{b}|f(x) \| g(x)| d x \leq I_{1}^{1 / p} I_{2}^{1 / q}
$$

Solution to \#1 on page 165.

Let $\left\{f_{n}: X \rightarrow\right\}_{n \in}$ be a uniformly bounded sequence of functions from a metric space X into . Then for each $n \in$, there exists $M_{n} \in$ such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in X$. Suppose further that f_{n} converges uniformly on X. Then choosing $\epsilon=1$, there exists $N \in$ such that

$$
\left|f_{n}(x)-f_{m}(x)\right|<1
$$

for all $n, m \geq N, x \in X$. Taking, in particular, $m=N$ gives us that

$$
\left|f_{n}(x)\right| \leq\left|f_{n}(x)-f_{N}(x)+f_{N}(x)\right| \leq\left|f_{n}(x)-f_{N}(x)\right|+\left|f_{N}(x)\right| \leq 1+M_{N}
$$

for all $x \in X, n \geq N$. Therefore, if $M=\max \left\{M_{1}, M_{2} \ldots, M_{N-1}, M_{N}+1\right\}$, we have

$$
\left|f_{n}(x)\right| \leq M
$$

for all $x \in X$ and all $n \in$.

Solution to \#4 on page 165. The series

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}
$$

diverges when $x=0$ because the terms are all 1 and do not converge to 0 . For each $n \in$, the series has an ill-defined term when $x=-1 / n^{2}$, so the series does not converge for these values of x either. On the other hand, if $I \subset$ is an interval such that $I \cap\left\{-1 / n^{2}\right\}_{n \in}=\emptyset$ and $0 \notin \bar{I}$, then then I claim that the series converges uniformly and absolutely on I-in particular, the series converges at every non-zero point in $-\left\{1 / n^{2}\right\}_{n \in}$. To see this is so, observe that since $0 \notin \bar{I}$, there exists $r>0$ such that $|x|>r$ for all $x \in I$. Thus

$$
\left|\frac{1}{1+n^{2} x}\right| \leq \frac{1}{n^{2}|x|-1} \leq \frac{1}{r n^{2}-1}
$$

for all $x \in I$. Hence, for $n \geq N_{1} \geq 1 / \sqrt{r-1 / 2}$, we have $r n^{2}-1 \geq r n^{2} / 2$ and

$$
\left|\frac{1}{1+n^{2} x}\right| \leq \frac{2}{r} \frac{1}{n^{2}}
$$

Let $s_{n}(x)$ denote the nth partial sum of the above series. Let $\epsilon>0$. Since $\sum_{n=0}^{\infty} \frac{1}{n^{2}}$ is convergent, there exists $N_{2} \in$ such that $m \geq n \geq N_{2}$ implies that

$$
\sum_{k=n}^{m+1} \frac{1}{n^{2}}<\frac{r \epsilon}{2}
$$

So for $x \in I$, we have for $m \geq n \geq N:=\max \left\{N_{1}, N_{2}\right\}$ that

$$
\left|s_{n}(x)-s_{m}(x)\right| \leq \sum_{k=n+1}^{m}\left|\frac{1}{1+n^{2} x}\right| \leq \frac{2}{r} \sum_{k=n}^{m+1} \frac{1}{n^{2}}<\epsilon
$$

That is, the sequence of partial sums $\left\{s_{n}(x)\right\}_{n \in}$ is uniformly Cauchy, and therefore uniformly convergent. This proves my claim. By Theorem 7.12, the series is continous as a function of x on I. Taking the union of all such intervals I tells us that the series defines a continuous function of x on $-\{0\}-\left\{1 / n^{2}\right\}_{n \in}$.

