
Solutions to Homework 11

Problem 1. Solve the following initial value problems

1. y′ = sin t
y , y(π/2) = 1.

Solution. Rearranging and integrating the equation gives

log |y| =
∫

dy

y
=

∫
y′

y
dt =

∫
sin t dt = − cos t + C,

where the constant C is determined by plugging in the initial condition:

log |1| = −0 + C.

So C = 0. Note that this also implies that the sign y is positive when we drop the absolute
value inside the logarithm (why?). We conclude that

log y(t) = − cos t ⇒ y(t) = e− cos t.

2. (1 + t2)y′ + 4ty = (1 + t2)−2, y(1) = 0.

Solution. First we replace the right side with zero and solve the ’homogenized’ version of
the equation, obtaining

yh(t) =
A

(1 + t2)2
.

Then we assume that y has the form y(t) = A(t)(1 + t2)2 for some unknown function A(t).
Plugging this back into the original differential equation leads to the following formula for A′:

A′(t) =
1

1 + t2
.

Antidifferentiating both sides yields A(t) = tan−1 t + C. So

y(t) =
C + tan−1 t

(1 + t2)2
.

Finally, we plug in the initial condition to compute that C = −π/4. In conclusion,

y(t) =
−π/4 + tan−1 t

(1 + t2)2
.



Problem 2. Disillusioned about mathematics, you descend the ivory tower and set yourself the task
of becoming a millionaire by age 50. The plan is simple. You will stash away money continuously
from now til then at a constant rate of R$ per year. You figure that in your new life as day trader,
you can make a reliable 8% annual interest (compounded continuously, of course) on your savings.
Unfortunatly, college has left you broke as well as disillusioned, so you’re starting from nothing. At
what rate R will you need to be saving your money?

Solution. If y(t) is the amount of money saved up (with interest) at time t, then then y satisfies
the following conditions (t = 0 is now, t = 30 is age 50).

y(0) = 0, y(30) = 106, y′ = .08y + R.

The differential equation is separable, and solving it gives

y(t) = − R

.08
+ Ae.08t

for some constant A. Using the two additional conditions gives us

0 = −R/.08 + A, 106 = −R/.08 + Ae2.4,

and these can be solved together to give R = .08 · 106(e2.4 − 1) ≈ $7981.5 per year.

Problem 3. This problem was mis-stated: the function f should have been C2 instead of C1, and
the second item should have said N(Nδ(r)) ⊂ Nδ(r) rather than f(Nδ(r)) ⊂ Nδ(r). The upshot is
that I’ll let this one go without grading. The correct (I hope) statement and solution of the problem
are as follows.

Remember Newton’s method? The idea is that you have a C2 function f : R → R. You know
that f(r) = 0 for some point r ∈ U , and you have a decent initial guess x0 at the location of r.
Beginning with this guess, you then produce a sequence of (hopefully better) approximations of r
by setting

xn+1 = N(xn)

for every n ∈ N, where N(x) = x − f(x)/f ′(x). Now assume that r is a non-degenerate root of
f—i.e. that f ′(r) 6= 0. Prove the following.

• r is a fixed point of N .

Solution. N(r) = r − f(r)/f ′(r) = r − 0/f ′(r) = r. �

• There exists δ > 0 such that N(Nδ(r)) ⊂ Nδ(r)

Solution. Given x, the mean value theorem gives us a number c between x and r such that

N(x)−N(r) = N ′(c)(x− r) =
f ′′(c)f(c)

f(c)2
(x− r).

Moreover, since f is C2, f ′(r) 6= 0, and f(r) = 0, the function N ′ = ff ′′/(f ′)2 is continuous
in some neighborhood Nδ0(r) (i.e. on any open set where f ′(r) does not vanish) and satisfies
N ′(r) = 0. Hence there exists 0 < δ < δ0 such that |x− r| < δ implies that

|N ′(x)| = |N ′(x)−N ′(r)| < 1
2
.



Putting the two displayed equations together allows us to conclude that

|N(x)− r| = |N(x)−N(r)| < 1
2
|x− r|

for all x ∈ Nδ(r). In particular x ∈ Nδ(r) implies that N(x) ∈ Nδ/2(r). That is,

N(Nδ(r)) ⊂ Nδ/2(r) ⊂ Nδ(r)

as asserted. �

• The (restricted) function N : Nδ(r) → Nδ(r) is a contraction mapping.

Solution. Let δ be as in the solution to the previous item. Then for any points x1, x2 ∈ Nδ(r),
we have

|N(x1)−N(x2)| = |N ′(c)||x1 − x2| ≤
1
2
|x1 − x2|,

where c is between x1 and x2 (and therefore belongs to Nδ(r)). �

(The mean value theorem will be useful in the second and third items.) What can you conclude
from all this about how well Newton’s method works?

Answer. r is the unique fixed point of N in the open interval Nδ(r), and if the initial guess x0

happens to be in Nδ(r), then the sequence x1, x2, . . . of subsequent guesses will remain in Nδ(r)
and converge to r. In short, Newton’s method works if the initial guess is good enough.

Problem 4. Suppose that f, g : R2 → R are continuous functions and that f(y, t) > g(y, t) for all
points (y, t) ∈ R2. Let y1, y2 : R → R be functions satisfying

y′1 = f(y1, t), y′2 = g(y2, t)

for all t ∈ R. Show that y1(t0) = y2(t0) for at most one point t0 ∈ R.

Solution. Let h : R → R be the function h(t) = y1(t) − y2(t). Then in particular, h′(t) =
f(y1(t), t)− g(y2(t), t) exists and is continuous and every point t ∈ R. Also, if t0 ∈ R is any point
where y0 := y1(t0) = y2(t0), then

h(t0) = 0, h′(t0) = f(y0, t0)− g(y0, t0) > 0.

By continuity, we see that there exists δ0 > 0 such that h′(t) > 0 for all |t− t0| < δ0. That is, h is
strictly increasing on (t0 − δ0, t0 + δ0). So h(t) > h(t0) for all t ∈ (t0, t0 + δ0) and h(t) < h(t0) for
all t ∈ (t0 − δ0, t0).

Now suppose, for the sake of obtaining a contradiction, that there is a second point at which
y1 equals y2. We can suppose without loss of generality that this point is larger than t0. Then it
is meaningful to define

t1 := inf{t > t0 : h(t) = y1(t)− y2(t) = 0}



(i.e. we’re not taking the infimum of the empty set). By continuity h(t1) = 0. Clearly, t1 ≥ t0, so
the work above implies in fact that t1 ≥ t0 + δ0 > t0. Repeating the arguments used on for t0, we
see that there exists δ1 > 0 such that, among other things, h(t) < 0 for t ∈ (t1 − δ1, t1).

So to be perfectly specific, let us consider for example the points s0 = t0+δ0/2 and s1 = t1−δ1/2.
Then

t0 < s0 < s1 < t1, and h(s0) > 0 > h(s1).

The intermediate value theorem therefore gives us a point s ∈ (s0, s1) ⊂ (t0, t1) such that h(s) =
y1(s)− y2(s) = 0. This contradicts the fact that t1 was supposed to be the smallest root of h larger
than t0. It follows that there is no point other than t0 at which y1 = y2. �

Problem 5. Let f : R → R be a function. The support of f is the set

K := {x ∈ R : f(x) 6= 0}

Show that if f is real analytic (and not the zero function), then K cannot be compact. Show by
giving an example that K can be compact if f is merely C∞.

Solution. Suppose that f is analytic and let g(x) ≡ 0 be the zero function, which is also analytic.
If the support K of f is compact, then the set E = {x ∈ R : f(x) = g(x)} contains all points in
the non-empty open set R−K. This directly contradicts Theorem 8.5, which says that E has no
limit points unless f and g are equal. Hence K is not compact. �

To see that C∞ functions can have compact support, let h : R → R be the function considered
in class

h(x) =
{

0 if x ≤ 0
e−1/x if x > 0

.

Set f(x) = h(1 − x)h(x + 1). Then it is not hard to see that f(x) = 0 if |x| ≥ 1 but f(x) > 0 if
|x| < 1. So the support of f is [−1, 1] which is compact.

Problem 6. Redo supplementary problem 2 from the homework assigned on 11/3/03:

Solution. Given ε > 0, we seek to construct a partition P of [0, 1] satisfying

U(P, f)− L(P, f) < ε.

This time, however, we let
S = {x ∈ [0, 1] : f(x) ≥ ε/2}.

I claim that there are only finitely many points in S. Indeed any x ∈ S is rational, and can be written
x = p/q where gcd(p, q) = 1 and q ≤ 2/ε (since f(x) = 1/q). So if N ∈ N exceeds 2/ε, then the
denominator q is x can only range from 1 to N . Moreover, for fixed denominator q, the numerator
of x must range between 0 and q. So all told, S contains at most

∑N
q=1(q + 1) = (q + 1)(q + 2)/2

elements.
Clearly then, we can cover S with disjoint open intervals Ij = (aj , bj), j = 1, . . . , n := #S such

that
∑n

j=1 bj − aj < ε/2. Putting the intervals in order and intersecting them with [0, 1] we obtain
a partition P of [0, 1] consisting of the points

a = a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn = b.



Since 0 ≤ f(x) ≤ 1 for all x, we have

0 ≤ L(P, f) ≤ U(P, f) ≤
n∑

j=1

1(bj − aj) +
n−1∑
j=1

ε/2(aj+1 − bj).

The first sum is equal to the sum of the lengths of the intervals Ij and the second is no larger than
ε/2 times the length of the full interval [0, 1]. Hence

U(P, f)− L(P, f) < ε

and we conclude that f is integrable. �


