
Homework Set 4: Solutions

Supplementary Problem 1. Rudin’s definition of a connected subset of a metric space is a little
non-standard. Prove that his definition is equivalent to the following more standard one:

A subset E of a metric space X is connected if for every pair U, V ⊂ X of disjoint non-empty
open sets whose union contains E, we have either E ⊂ U or E ⊂ V .

Solution. We will show that E is disconnected according to Rudin’s definition if and only if E is
disconnected according to the above definition.

Let us first suppose that E is disconnected according to the above definition. That is, E ⊂ U∪V ,
where U and V are disjoint open sets such that E ∩ U,E ∩ V 6= ∅. We set

A
def= E ∩ U, B

def= E ∩ V.

Then it follows immediately that A ∪ B = E and A,B 6= ∅, To see that E is disconnected by
Rudin’s definition, we must show that

A ∩B = ∅ = A ∩B.

Let us establish, for example, the right-hand equality (the method is exactly the same for the left-
hand equality). Given b ∈ B, we have b ∈ V by construction. Since V is open there exists r > 0
such that Nr(b) ⊂ V . But

Nr(b) ∩A ⊂ Nr(b) ∩ U ⊂ V ∩ U = ∅.

Therefore b /∈ A, and we conclude that A and B separate E—i.e. E is disconnected according to
Rudin’s definition.

Now we establish the reverse implication. Suppose that E is disconnected according to Rudin’s
definition and that A and B are sets separating E. Then for each a ∈ A, we know that a /∈ B, so
we can choose r = r(a) > 0 such that Nr(a)(a) ∩B = ∅. We set

U
def=

⋃
a∈A

Nr(a)/2(a)

(note the factor of 1/2). Similarly, for each b ∈ B, we have b /∈ A, and we can therefore choose
r(b) > 0 so that Nr(b)(b) ∩A = ∅. We set

V
def=

⋃
b∈B

Nr(b)/2(b).

Then by construction, U and V are open sets whose union contains E. If we can show that they
are disjoint, we will be done. So suppose that x is a point in U ∩V . Then there exists a ∈ A, b ∈ B
such that x ∈ Nr(a)/2(a) ∩Nr(b)/2(b). But this means that

dist(a, b) ≤ dist(a, x) + dist(x, b) ≤ r(a)
2

+
r(b)
2

≤ max{r(a), r(b)}.

If, for example r(a) is the larger of the two radii, then we would conclude that b ∈ Nr(a)(a),
contradicting the fact that Nr(a)(a) ∩ B = ∅. Thus x does not exist, and U and V are indeed
disjoint. We conclude that E is disconnected by the above definition. �



Supplementary Problem 2. Let P ⊂ [0, 1] be the middle thirds Cantor set discussed in Rudin
and in class.

1. Show that P is totally disconnected. That is, for every two points x 6= y in P , there are open
sets U, V ⊂ R such that x ∈ U , y ∈ V and P ⊂ U ∪ V .

Solution: The complement of P includes every open interval of the form(
3k + 1

3n
,
3k + 2

3n

)
where k, n ∈ N. In particular, R− P includes the midpoint

zk,n
def=

3k + 1/2
3n

of every such interval.

Now let x, y ∈ P be two distinct points—say x < y, for example. Then choose n ∈ N so that
2 · 3−n < y − x. Then if k ∈ N is the smallest integer such that 3−nk > x, we have that(

3k + 1
3n+1

,
3k + 2
3n+1

)
⊂ (3−nk, 3−n(k + 1)) ⊂ (x, y).

In particular, x < zk,n+1 < y. Therefore the sets

U
def= (−∞, zk,n+1), V

def= (zk,n+1,∞)

separate P and contain x and y, respectively. �

2. Compute the sum of the lengths of the open intervals in [0, 1]−P . Based on your computation,
if we were to assign a length to the Cantor set itself, what would it have to be?

Solution: At each stage in the creation of P we discard 2n intervals, each of length 3−n−1

(starting with n = 0). Therefore, the total length of all intervals in the complement is
∞∑

n=0

2n

3n+1
=

1/3
1− 2/3

= 1.

So the length of P , if it is meaningful, should be 1− 1 = 0.

3. Show that the sequence {sinn}n∈N ⊂ R diverges.

Solution: First, notice that since π/2 > 1, there is an integer n in each interval of the form
(2kπ + π/4, 2kπ + 3π/4). At that value of n, we must have sin n >

√
2/2. Letting k →∞, we

see that we can find arbitrarily large such n.

Similarly, we can find arbitrarily large n ∈ N such that n ∈ (2kπ−π/4, 2kπ− 3π/4) for some
k ∈ N, and for these values of n, we have sinn < −

√
2/2.

So if we take ε =
√

2 and let N ∈ N be any integer, then we can find n1, n2 ≥ N such that

| sinn1 − sin n2| > |
√

2/2− (−
√

2/2)| =
√

2.

This shows that {sinn}n∈N is not a Cauchy sequence and therefore does not converge. �



Page 40, # 20, solution. A connected set E need not have connected interior. For instance,
take E = {(x, y) ∈ R2 : x, y ≤ 0} ∪ {(x, y) ∈ R2 : x, y ≥ 0}. On the other hand, if E is connected,
then E must also be connected:

Proof. We will show that E disconnected implies that E is disconnected. Indeed if E ⊂ U ∪ V ,
where U, V are disjoint open sets, each intersecting E, then clearly E ⊂ U ∪ V as well.

It only remains to show that E ∩ U and E ∩ V are non-empty. So choose a point x ∈ E ∩ U .
Then since U is open, there exists r > 0 such that Nr(x) ⊂ U . But since x is either an element of
E or a limit point of E, we see that Nr(x) ∩ E 6= ∅. Therefore E ∩ U 6= ∅ as we hoped. The proof
that E ∩ V is non-empty is identical. �

Page 78, # 1, solution. Let s = lim sn. Then given ε > 0, we have N ∈ N such that

|sn − s| < ε

for every n ≥ N . But then
||sn| − |s|| < |sn − s| < ε,

too. Therefore limn→∞ |sn| = s. �

The converse is false, as the example sn = (−1)n demonstrates.

Page 78, # 2, solution. First observe that

lim
n→∞

√
n2 + n− n = lim

n→∞
(
√

n2 + n− n)
√

n2 + n + n√
n2 + n + n

= lim
n→∞

n√
n2 + n + n

= lim
n→∞

1√
1 + 1/n + 1

=
1

1 + limn→∞
√

1 + 1/n
.

Now observe that
1 ≤

√
1 + 1/n ≤ 1 + 1/n

for all n ∈ N. Therefore by the squeeze theorem,

lim
n→∞

√
1 + 1/n = 1.

We conclude that
lim

n→∞

√
n2 + n− n =

1
2
.


