
Solutions to Homework 6

Supplementary problem 1. Prove directly from Definition 4.5 that the function f : [0,∞) →
[0,∞) given by f(x) =

√
x is continuous at every point in its domain.

Solution. First consider the point 0. If ε > 0 is given, then take δ = ε2. Then |x| < δ (and
x ∈ [0,∞)) implies that

|
√

x−
√

0| =
√

x <
√

δ = ε.

So f is continuous at the point 0.
Now let a ∈ (0,∞) be some other point. If ε > 0 is given, set δ =

√
aε. Then for any x ∈ [0,∞)

such that |x− a| < δ, we have

|
√

x−
√

a| =
∣∣∣∣ x− a√

x +
√

a

∣∣∣∣ ≤ |x− a|√
a

<
δ√
a

= ε.

So f is continuous at a. We conclude that f is continuous at every point in [0,∞). �

Supplementary problem 2. Prove each item in Theorem 4.4 directly from Definition 4.1—i.e.
do not use the corresponding facts about limits of sequences.

Part a. Let ε > 0 be given. By the hypotheses on f and g, we can choose δ1, δ2 > 0 so that for
each x ∈ E,

• 0 < d(x, p) < δ1 implies that |f(x)−A| < ε/2;

• 0 < d(x, p) < δ2 implies that |g(x)−B| < ε/2.

Therefore let us set δ = min{δ1, δ2}. If x ∈ E satisfies 0 < d(x, p) < δ, then the triangle inequality
gives

|(f + g)(x)− (A + B)| ≤ |f(x)−A|+ |g(x)−B| < ε/2 + ε/2 = ε.

Hence limx→p(f + g)(x) = A + B.

Part b. Let ε > 0 be given. By hypothesis on f and g, we can choose δ1, δ2 > 0 so that for each
x ∈ E,

• 0 < d(x, p) < δ1 implies that |f(x)−A| < ε/4|B|;

• 0 < d(x, p) < δ2 implies that |g(x)−B| < min{ε/2|A|, |B|} (in particular, |g(x)| < 2|B|).

Therefore let us set δ = min{δ1, δ2}. If x ∈ E satisfies 0 < d(x, p) < δ, then

|(fg)(x)−AB| ≤ |f(x)g(x)−Ag(x)|+ |Ag(x)−AB| < 2|B||f(x)−A|+ |A||g(x)−B|

< 2|B| ε

4|B|
+ |A| ε

2|A|
= ε.

Hence limx→p(fg)(x) = AB.



Part c. Let ε > 0 be given. By hypothesis on f and g, we can choose δ1, δ2 > 0 so that for each
x ∈ E,

• 0 < d(x, p) < δ1 implies that |f(x)−A| < |B|ε/4;

• 0 < d(x, p) < δ2 implies that |g(x)−B| < min{ε, |B|2ε/|A|} (in particular, |g(x)| > |B|/2).

Therefore let us set δ = min{δ1, δ2}. If x ∈ E satisfies 0 < d(x, p) < δ, then

|(f/g)(x)−A/B| =
∣∣∣∣f(x)B −Ag(x)

g(x)B

∣∣∣∣ ≤ 2
|B|2

|f(x)B −Ag(x)|

≤ 2
|B|2

(|B||f(x)−A|+ |A||g(x)−B|) <
2
|B|2

(
|B| |B|ε

4
+ |A| |B|

2ε

4|A|

)
= ε.

Hence limx→p(f/g)(x) = A/B. �

Solution to #2 on Page 98. By Theorem 3.2d in Rudin, we can choose a sequence {xn} ⊂ E
converging to x (if x ∈ E, then we can take xn = x for all n ∈ N). Then by continuity of f and
Theorem 4.2, we see that

f(x) = f( lim
n→∞

xn) = lim
n→∞

f(xn).

Since f(xn) ∈ f(E) by definition, we conclude that f(x) ∈ E. And since x ∈ E was arbitrary,
f(E) ⊂ f(E).

To see that equality need not hold, consider f : R → R given by f(x) = ex. Then f(R) =
f(R) = (0,∞) 6= (0,∞) = [0,∞). �

Solution to #6 on Page 98. Let E ⊂ R be compact, f : E → R be a function on E, and
G = {(x, f(x)) ∈ R2 : x ∈ E} be the graph of f .

Suppose first that f is continuous. Then by Theorem 4.10a, so is the function F : E → R2

given by F (x) = (x, f(x)). As E is compact, we conclude that F (E) = G is compact, as well.
Now suppose instead that G is compact. Again by Theorem 4.10a, it is enough to show that

the map F defined in the previous paragraph is continuous. To this end, let K ⊂ R2 be closed, and
consider F−1(K) = F−1(K ∩G) = π(K ∩G) where π : R2 → R is the continuous map (x, y) → x.
Now K ∩G is a closed subset of a compact set and therefore compact. Hence π(K ∩G) is compact
and therefore closed. That is, the preimage of a closed set under F is closed, and F is therefore
continuous. We conclude that f is continuous. �

Solution to #10 on Page 99. Suppose by way of contradiction that f is not uniformly continuous
on X. That is, there exists ε > 0 such that for any δ > 0, we can find points p, q ∈ X such that
d(p, q) < δ while d(f(p), f(q)) ≥ ε. Let us fix this ε, and choose points p = pn, q = qn as above for
each δ of the form 1/n, n ∈ N. In other words, for each natural number n, we have

0 < d(pn, qn) < 1/n, d(f(pn), f(qn)) ≥ ε.

In particular limn→∞ d(pn, qn) = 0.
Now since X is compact, we can apply Theorem 3.6a from Rudin to obtain a subsequence

{pnk
} ⊂ {pn} that converges to some point p ∈ X. On the other hand limk→∞ d(pnk

, qnk
) → 0, so

it follows that lim qnk
= p, too. Therefore by continuity

lim
k→∞

f(pnk
) = f(p) = lim

k→∞
f(qnk

).



In particular,
lim

k→∞
d(f(pnk

), f(qnk
)) = 0

This contradicts the fact that d(f(pnk
), f(qnk

)) ≥ ε for all k ∈ N. Therefore, it must be the case
that we started on the wrong hypothetical foot and that f must be uniformly continuous on X
after all. �

Solution to #14 on Page 100. Let I = [a, b]. If f(a) = a or f(b) = b, we are already done, so we
can assume (because f(I) ⊂ I) that f(a) > a and f(b) < b. Consider the function g(x) = f(x)−x,
which is also continuous. Then by our assumptions, g(a) > 0 and g(b) < 0. So by the intermediate
value theorem, there exists x ∈ (a, b) such that g(x) = 0—i.e. f(x) = x. �


