Homework Set 7: Solutions

Page 100, $\#$ **17, solution.** Let x be a point at which f has a simple discontinuity. Then exactly one of the following is true.

- 1. $f(x+) < f(x-)$;
- 2. $f(x+) > f(x-);$
- 3. $f(x+) = f(x-) < f(x)$;
- 4. $f(x+) = f(x-) > f(x)$.

It will be enough to show that each of these things, taken separately, occurs at no more than countably many values of x .

So let us first consider those x as in case (1). By the density property we can choose $p \in \mathbf{Q}$ such that $f(x+) < p < f(x-)$. Then we set

$$
\epsilon = \min\{f(x-) - p, p - f(x+)\}
$$

By definition of the left and right hand limits $f(x-)$ and $f(x+)$, there exists $\delta > 0$ so that

- $x \delta < t < x$ implies $|f(x) f(x-)| < \epsilon$ (so, in particular, $f(x) < f(x-) + \epsilon \leq p$);
- $x < t < x + \delta$ implies $|f(x) f(x+)| < \epsilon$ (so, in particular, $f(x) > f(x+)-\epsilon \geq p$).

Invoking the density property again, we can choose $q, r \in \mathbf{Q}$ such that

$$
x - \delta < q < x < r < x + \delta,
$$

thereby associating to x a triple $(p, q, r) \in \mathbb{Q}^3$ such that

- \bullet $q < x < r$,
- $f(t) < p$ for all $t \in (q, x)$, and
- $f(t) > p$ for all $t \in (x, r)$.

I claim now that if x' is another point at which f has a simple discontinuity of type (1) , then (at least one member of) the triple (p', q', r') associated to x' differs from the triple (p, q, r) associated to x. To see this suppose that $x' < x$ (the case $x < x'$ is identical) but $(p', q', r') = (p, q, r)$. Then $q < x' < x < r$, so if t is any point between x' and x , we have $f(t) > p$ because $x' < t < r$ but $f(t) < p$ because $q < t < x$. Since this is impossible, it must be the case that $(p', q', r') \neq (p, q, r)$.

In summary we have defined an injective function from the set of points where f has a simple discontinuity of type (1) into \mathbf{Q}^3 . Since the latter set is countable, we conclude that f has no more than countably many simple discontinuities of type (1).

The case of simple discontinuities of type (2) is handled in a completely analogous fashion. Dealing with simple discontinuities of type (3) differs only slightly in that we choose $(p, q, r) \in \mathbb{Q}^3$ such that $f(t) < p$ for all $t \in (q, x) \cup (x, r)$. Finally simple discontinuities of type (4) are dealt with in the same way as those of type (3) . **Page 101, # 23, solution.** Beginning with a convex function $f:(a,b) \to \mathbf{R}$, let us first prove that $g \circ f$ is also convex whenever $g : (c, d) \to \mathbf{R}$ is a convex increasing function whose domain includes the range of f. If $x < y$ and $\lambda \in (0,1)$, then by definition of continuity, we have

$$
f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).
$$

Thus since g is increasing, we obtain

$$
g \circ f(\lambda x + (1 - \lambda)y) \le g(\lambda f(x) + (1 - \lambda)f(y)).
$$

Finally, applying the fact that g is convex to the right side of this inequality gives

 $g \circ f(\lambda x + (1 - \lambda)y) \leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$

We conclude that $q \circ f$ is a convex function. Ta da!

Now we establish the 'slope inequality' given in the problem for f , because it will be useful in proving that f is continuous. That is, if $s < t < u$ are numbers in (a, b) , we will prove that

$$
\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}
$$

Since t is between s and u, there exists $\lambda \in (0,1)$ such that

$$
t = \lambda s + (1 - \lambda)t,
$$

which implies that

$$
t - s = (1 - \lambda)(u - s)
$$

Moreover, by definition of convexity, we have

$$
f(t) \leq \lambda f(s) + (1 - \lambda)f(u),
$$

which, after subtracting $f(s)$ from both sides becomes

$$
f(t) - f(s) \le (1 - \lambda)(f(u) - f(s)) \le (t - s)\frac{f(u) - f(s)}{u - s}.
$$

Dividing through by $t - s$ then gives the first inequality above. The proof of the second inequality is similar. Cha-ching!

Now let $x \in (a, b)$ be any given point. We will show that f is continuous at x. Note that by the inequalities we just proved, the function

$$
m(t) := \frac{f(t) - f(x)}{t - x}
$$

is increasing in $t \neq x$ (verifying that $m(t_1) \leq m(t_2)$ for $t_1 < t_2$ requires applying our inequality for $s < t < u$ to each of the three cases $x < t_1 < t_2$, $t_1 < x < t_2$, and $x < t_1 < t_2$).

So fix numbers $A < x < B$ in (a, b) . Then $m(A) \le m(t) \le m(B)$ for all $t \in (A, B)$ not equal to x. In particular, taking $C = \max\{|m(A)|, |m(B)|\}$, we see that $|m(t)| \leq C$ for all $t \in (A, B)$. That is,

$$
|f(t) - f(x)| \le C|t - x|.
$$

Now if $\epsilon > 0$ is given, we take $\delta = \min{\{\epsilon/C, x - A, B - x\}}$. Then $0 < |t - x| < \delta$ implies that $A < t < B$, and therefore

$$
|f(t) - f(x)| \le C|t - x| < C\delta \le \epsilon.
$$

This shows that $\lim_{t\to x} f(t) = f(x)$ —i.e. f is continuous at x. As x is arbitrary f is continuous on $(a, b).$

Page 114, $\#$ **6, solution.** Since f is differentiable, so is g. We will show that $g'(x) \geq 0$ for every $x > 0$. Then if $0 \le x_1 < x_2$, the mean value theorem gives us a number $c \in (x_1, x_2)$ such that

$$
g(x_2) - g(x_1) = g'(c)(x_2 - x_1) \ge 0,
$$

so that q is increasing, as desired.

Now

$$
g'(x) = \frac{xf'(x) - f(x)}{x^2}.
$$

Moreover, another application of the mean value theorem gives us $c \in (0, x)$ such that

$$
\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(c).
$$

But f' is an increasing function, so

$$
\frac{f(x)}{x} \le f'(x).
$$

Rearranging this and using the fact that $x > 0$ gives

$$
\frac{x f'(x) - f(x)}{x^2} \ge 0.
$$

We conclude that $g'(x) \geq 0$, and therefore g is increasing.

Page 114, # 9, solution. Yes, it does. Let $\{x_n\} \subset \mathbb{R} - \{0\}$ be any sequence of points converging to 0. The mean value theorem gives us a second sequence $\{c_n\}$ such that for every $n \in \mathbb{N}$, c_n is between x_n and 0 (so by the Squeeze Theorem $c_n \to 0$) and

$$
\frac{f(x_n) - f(0)}{x_n - 0} = f'(c_n).
$$

It follows that

$$
\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = \lim_{n \to \infty} f'(c_n) = 3.
$$

Since the sequence $\{x_n\}$ was arbitrary, we conclude from Theorem 4.2 that

$$
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3.
$$

Page 115, $\#$ **13abcd. Solution** In all cases, it is only necessary to verify statements at $x = 0$ (or in part (c), in a neighborhood of $x = 0$).

- (a) If $a = 0$, then we have already observed in class that $\lim_{x\to 0} f(x)$ does not exist, so f cannot be continuous at $x = 0$. if $a < 0$, then f is not even bounded near 0, so f is not continuous at $x = 0$. If $a > 0$, on the other hand, then $|f(x)| < |x|^a \to 0$ as $x \to 0$. So the squeeze theorem implies that $\lim_{x\to 0} f(x) = 0 = f(0)$, and f is continuous at 0.
- (b) By definition of the derivative, we have

$$
f'(0) = \lim_{x \to 0} x^{a-1} \sin(x^{-c})
$$

which, as we observed in part (a), exists if and only if $a - 1 > 0$.

 \Box

(c) Note that by part (b) we must have $a > 1$. For $x \neq 0$, we have

$$
f'(x) = ax^{a-1}\sin(x^{-c}) + cx^{a-c-1}\cos(x^{-c}).
$$

The first term is bounded since $a > 1$, and the second is bounded if and only if $a \geq c + 1$.

(d) This follows immediately from parts (a) (which works for the cosine as well as the sine function) and (c).

Page 115, # 14. Solution Let $f:(a, b) \to \mathbf{R}$ be a differentiable a function. Supposing first that f' is monotonically increasing, we will show that f is convex. Given numbers $x < y$ in (a, b) and $\lambda \in (0,1)$, let

$$
z = \lambda x + (1 - \lambda)y.
$$

Then the mean value theorem gives us $c_1 \in (x, z)$, $c_2 \in (z, y)$ such that

$$
f(z) - f(x) = f'(c_1)(z - x), \qquad f(y) - f(z) = f'(c_2)(y - z).
$$

Rewriting z in terms of x, y, and λ on the right sides of both equations, and using the fact that $f'(c_2) \ge f'(c_1)$ gives

$$
\lambda(f(z) - f(x)) \le (1 - \lambda)(f(y) - f(z)),
$$

which, upon solving for $f(z)$, yields

$$
f(z) \leq \lambda f(x) + (1 - \lambda)f(y).
$$

This shows that f is convex.

Now let us begin again supposing that f is convex, and trying to show that f' is monotonically increasing. That is, if $x < y$ are two points in (a, b) , we seek to prove that $f'(x) \le f'(y)$. To do this let t be any point strictly between x and y. Then our 'slope inequality' from page $101/\text{\#}23$ tells us that

$$
\frac{f(t) - f(x)}{t - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(t)}{y - t}.
$$

Letting $t \to x$ in the left and middle expressions gives

$$
f'(x) \le \frac{f(y) - f(x)}{y - x}.
$$

Letting $t \rightarrow y$ in the middle and right expressions gives

$$
\frac{f(y) - f(x)}{y - x} \le f'(y).
$$

Combining the two inequalities gives $f'(x) \leq f'(y)$, as desired.

Finally, if f'' exists on (a, b) , we note that f' is increasing if and only if $f''(x) \geq 0$ at every x. So by our work above, f is convex if and only if f'' is non-negative on (a, b) .

Page 116, $#$ **19. Solution:** For parts (a) and (b) it is useful to note that

$$
\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = \frac{f(\beta_n) - f(0)}{\beta_n - 0} \frac{\beta_n}{\beta_n - \alpha_n} - \frac{f(\alpha_n) - f(0)}{\alpha_n - 0} \frac{\alpha_n}{\beta_n - \alpha_n}
$$

Therefore, if we compare with the derivative of f at zero, we can use the fact that

$$
f'(0) = f'(0)\frac{\beta_n}{\beta_n - \alpha_n} - f'(0)\frac{\alpha_n}{\beta_n - \alpha_n}
$$

together with the triangle inequality to obtain

$$
\left|\frac{f(\beta_n)-f(\alpha_n)}{\beta_n-\alpha_n}-f'(0)\right|\leq \left|\frac{f(\beta_n)-f(0)}{\beta_n-0}-f'(0)\right|\left|\frac{\beta_n}{\beta_n-\alpha_n}\right|+\left|\frac{f(\alpha_n)-f(0)}{\alpha_n-0}-f'(0)\right|\left|\frac{\alpha_n}{\beta_n-\alpha_n}\right|
$$

Therefore if both $\{\beta_n/(\beta_n - \alpha_n)\}\$ and $\{\alpha_n/(\beta_n - \alpha_n)\}\$ are bounded, we conclude that

$$
\lim_{n \to \infty} \left| \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - f'(0) \right| = 0.
$$

We now deal with parts (a) and (b) in light of this discussion.

(a) If $\alpha_n < 0 < \beta_n$, then $\beta_n - \alpha_n$ is larger than both $|\beta_n|$ and $|\alpha_n|$. Hence,

$$
\left|\frac{\beta_n}{\beta_n-\alpha_n}\right|,\left|\frac{\alpha_n}{\beta_n-\alpha_n}\right|<1
$$

for every $n \in \mathbb{N}$. It follows immediately, then, from the discussion above that

$$
\lim_{n \to \infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f'(0).
$$

(b) By assumption, there exists $C \in \mathbf{R}$ such that $|\beta_n/(\beta_n - \alpha_n)| \leq C$ for all $n \in \mathbf{N}$. Thus

$$
\left|\frac{\alpha_n}{\beta_n - \alpha_n}\right| \le \left|\frac{\alpha_n - \beta_n}{\beta_n - \alpha_n}\right| + \left|\frac{\beta_n}{\beta_n - \alpha_n}\right| \le 1 + C
$$

for every $n \in \mathbb{N}$. It therefore follows again from the discussion preceding part (a) that

$$
\lim_{n \to \infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f'(0).
$$

(b) By the mean value theorem, we have for every $n \in \mathbb{N}$ a number $c_n \in (a_n, b_n)$ such that

$$
f'(c_n) = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}
$$

Since $a_n, b_n \to 0$, it follows from the Squeeze Theorem that $c_n \to 0$. And since we are assuming now that f' is continuous at 0, we have

$$
\lim_{n \to \infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = \lim_{n \to \infty} f'(c_n) = f'(\lim_{n \to \infty} c_n) = f'(0),
$$

as advertised. \square

 \Box

Page $117, \# 22$ abc. Solution:

(a) Suppose by way of contradiction that $x < y$ are distinct fixed points of f. Then the mean value theorem gives us $c \in (x, y)$ such that

$$
f'(c) = \frac{f(y) - f(x)}{y - x} = \frac{y - x}{y - x} = 1
$$

contrary to our assumption that f' is never equal to 1. Therefore, f has at most one fixed point. \Box

(b) Setting $f(t) = t$ for this particular function f gives us that

$$
e^t = -1,
$$

which is impossible. Therefore, f has no fixed points. On the other hand

$$
f'(t) = 1 - \frac{e^t}{(1 + e^t)^2}.
$$

Moreover, since $e^t > 0$ for every $t \in \mathbf{R}$,

$$
0 < \frac{e^t}{(1+e^t)^2} < \frac{e^t+1}{(1+e^t)^2} = \frac{1}{1+e^t} < 1.
$$

That is, $1 > f'(t) > 0$ for all $t \in \mathbf{R}$.

(c) Let $x_1 \in \mathbf{R}$ be any point and $\{x_n\}$ be the sequence determined by setting $x_{n+1} = f(x_n)$ for every $n \in \mathbb{N}$. Then by the mean value theorem

$$
|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| = |f'(c)||x_n - x_{n-1}|
$$

for some c between x_n and x_{n-1} . In particular,

$$
|x_{n+1} - x_n| \le A |x_n - x_{n-1}|,
$$

where A is the constant given in the problem. Applying this inequality inductively gives

$$
|x_{n+1} - x_n| \le A^{n-1} |x_2 - x_1|.
$$

We will use this to show that $\{x_n\}$ is a Cauchy sequence. Let $\epsilon > 0$ be given and choose $N \in \mathbb{N}$ large enough that $\frac{A^N}{1-A} < \epsilon/C$, where $C := |x_2 - x_1|$. Then if $m > n \ge N$ we have

$$
|x_m - x_n| = \left| \sum_{j=n}^{m-1} (x_{j+1} - x_j) \right| \le \sum_{j=n}^{m-1} |x_{j+1} - x_j| \le C \sum_{j=n}^{m-1} A^j \le C \sum_{j=n}^{\infty} A^j = C \frac{A^n}{1 - A} < \epsilon.
$$

This proves that $\{x_n\}$ is a Cauchy sequence. Since **R** is complete, we have $x \in \mathbf{R}$ such that $\lim x_n = x$. Since f is continuous, we also have

$$
f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x.
$$

So x is a fixed point for f. By part (a) there can be no other fixed point for f, so x does not depend at all on our initial choice of x_1

Alternative Proof (taken shamelessly from Jenista's hwk): Note that by hypothesis, we have

$$
|f(x) - f(0)| \le A|x - 0| = A|x|
$$

for every $x \in \mathbf{R}$. So suppose, for instance that $f(0) > 0$ (the case $f(0) < 0$ is similar, and if $f(0) = 0$, then 0 itself is the fixed point). Then the above inequality gives us for $x > 0$ that

$$
f(x) - f(0) \leq Ax
$$

(i.e. the graph of f stays below the line $y = f(0) + Ax$ which has slop less than 1). Therefore,

$$
f(x) - x \le f(0) + (A - 1)x
$$

for $x > 0$. In particular, since $A - 1 < 0$, we have $f(b) - b < 0$ for b large. But $f(x) - x$ is continous and $f(0) - 0 > 0$. So by the intermediate value theorem, there exists $a \in (0, b)$ such that $f(a) - a = 0$. We conclude that there exists a fixed point $x = a$ (which is unique by part (a)).

Now if $x = x_1$ is some other point and $x_{n+1} = f(x_n)$, we have

$$
|x_{n+1} - a| = |f(x_n) - f(a)| = |f'(c)||x_n - a|
$$

for some c between x_n and a by the Mean Value Theorem. But this means that

$$
|x_{n+1} - a| \le A|x_n - a| \le \ldots \le A^n |x_1 - a|
$$

for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} A^n = 0$, we conclude that

$$
\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = a.
$$