Homework Set 7: Solutions

Page 100, # 17, solution. Let x be a point at which f has a simple discontinuity. Then exactly
one of the following is true.

L fla+) < flz—);
2. fla+) > fla—);
3. flat) = fla—) < fl);
4. f(z+) = flz=) > f(z)

It will be enough to show that each of these things, taken separately, occurs at no more than
countably many values of x.

So let us first consider those x as in case (1). By the density property we can choose p € Q
such that f(z+) < p < f(x—). Then we set

e = min{f(z—) —p,p — f(z+)}
By definition of the left and right hand limits f(z—) and f(x+), there exists 6 > 0 so that
o r— 0 <t<uximplies |f(z) — f(z—)| < € (so, in particular, f(z) < f(z—) + € < p);
e r <t<ux+0 implies |f(x) — f(z+)| < € (so, in particular, f(x) > f(z+) — € > p).
Invoking the density property again, we can choose ¢, € Q such that
r—0<qg<z<r<z+yd,

thereby associating to x a triple (p, q,7) € Q3 such that
e g<x <,
e f(t) <pforallte (gx),and
o f(t) >pforallte (z,r).

I claim now that if 2’ is another point at which f has a simple discontinuity of type (1), then (at
least one member of) the triple (p', ¢, ') associated to 2’ differs from the triple (p, ¢,) associated
to z. To see this suppose that 2’ < x (the case x < 2’ is identical) but (p’,¢’,r") = (p,q,7). Then
g < <z <r, soiftis any point between 2’ and z, we have f(t) > p because 2’ < t < r but
f(t) < p because ¢ < t < x. Since this is impossible, it must be the case that (p',¢,") # (p, q,7).

In summary we have defined an injective function from the set of points where f has a simple
discontinuity of type (1) into Q3. Since the latter set is countable, we conclude that f has no more
than countably many simple discontinuities of type (1).

The case of simple discontinuities of type (2) is handled in a completely analogous fashion.
Dealing with simple discontinuities of type (3) differs only slightly in that we choose (p,q,7) € Q3
such that f(¢) < p for all t € (¢, z) U (x,r). Finally simple discontinuities of type (4) are dealt with
in the same way as those of type (3). O



Page 101, # 23, solution. Beginning with a convex function f : (a,b) — R, let us first prove
that g o f is also convex whenever ¢ : (¢,d) — R is a convex increasing function whose domain
includes the range of f. If z < y and A € (0,1), then by definition of continuity, we have

fAz 4+ (1= Ny) <Af(z)+ (1= A)f(y).

Thus since g is increasing, we obtain

go f(Az+ (1 =Ny) < g(Af(z)+ (1= A)f(y)).
Finally, applying the fact that g is convex to the right side of this inequality gives

go f(Az+(1—Ny) < Ag(f(z)) + (1= Ng(f(y))
We conclude that g o f is a convex function. Ta da!
Now we establish the ‘slope inequality’ given in the problem for f, because it will be useful in
proving that f is continuous. That is, if s < ¢ < u are numbers in (a,b), we will prove that
f@) = f(s) _ flw) = f(s) _ f(u) = f(?)

t—s - uU—S - u—t

Since t is between s and u, there exists A € (0, 1) such that
t=As+ (1 =N,
which implies that
t—s=(1-=X)(u—s)

Moreover, by definition of convexity, we have

f@) S Af(s) + (1= A)f(u),
which, after subtracting f(s) from both sides becomes

J(u) — f(s
£~ £(5) < (L= X (Fw) — F(s)) < (¢ — 9D =TC)
Dividing through by ¢t — s then gives the first inequality above. The proof of the second inequality
is similar. Cha-ching!

Now let x € (a,b) be any given point. We will show that f is continuous at xz. Note that by
the inequalities we just proved, the function

m(t) =

is increasing in ¢t # x (verifying that m(t1) < m(tq) for t; < to requires applying our inequality for
s < t < u to each of the three cases z < t; < t9, t] < z < t2, and = < t; < t2).

So fix numbers A < z < B in (a,b). Then m(A) < m(t) < m(B) for all t € (A4, B) not equal to
x. In particular, taking C' = max{|m(A)|,|m(B)|}, we see that |m(t)] < C for all t € (A, B). That
is,

f(t) — f(z)

t—x

[f(t) = f(2)] < CJt —l.
Now if € > 0 is given, we take 6 = min{e/C,x — A, B — z}. Then 0 < |t — x| < § implies that
A <t < B, and therefore
[f(t) = @) <Clt —z| <Cd <.
This shows that lim;_,, f(¢) = f(z)—i.e. f is continuous at x. As x is arbitrary f is continuous on
(a,b). O



Page 114, # 6, solution. Since f is differentiable, so is g. We will show that ¢'(x) > 0 for every
x > 0. Then if 0 < 21 < z2, the mean value theorem gives us a number ¢ € (z1,x2) such that

g(x2) — g(x1) = ¢'(c)(x2 — 21) > 0,

so that g is increasing, as desired.
o f'(@) — f(=z)
, zfl(x) — f(x
r = ——-,:.
g (x) -
Moreover, another application of the mean value theorem gives us ¢ € (0, z) such that

f@) _ @)= SO _

T x—0

But f/ is an increasing function, so
fx) _
2 < fw)
Rearranging this and using the fact that x > 0 gives
of () — f(z) _

0.
2 -

We conclude that ¢'(z) > 0, and therefore g is increasing. O

Page 114, # 9, solution. Yes, it does. Let {z,,} C R—{0} be any sequence of points converging
to 0. The mean value theorem gives us a second sequence {c,} such that for every n € N, ¢, is
between x,, and 0 (so by the Squeeze Theorem ¢, — 0) and

f(@n) = £(0)

ol
2y — 0 =f (Cn)
It follows that 0
lim 7]0(&6”) _(J:( ) = lim f'(c,) = 3.
n—oo Ty — n—oo

Since the sequence {z,} was arbitrary, we conclude from Theorem 4.2 that

o f@) = ()

z—0 z—0 =3

0

Page 115, # 13abcd. Solution In all cases, it is only necessary to verify statements at x = 0
(or in part (c), in a neighborhood of x = 0).

(a) If a = 0, then we have already observed in class that lim,_,o f(z) does not exist, so f cannot
be continuous at x = 0. if a < 0, then f is not even bounded near 0, so f is not continuous at
x =0. If a > 0, on the other hand, then |f(z)| < |z|* — 0 as x — 0. So the squeeze theorem
implies that lim, ¢ f(z) = 0 = f(0), and f is continuous at 0.

(b) By definition of the derivative, we have

f'(0) = lim 201 sin(z™°)

z—0

which, as we observed in part (a), exists if and only if @ — 1 > 0.



(c) Note that by part (b) we must have a > 1. For z # 0, we have
f(z) = ax® sin(z™¢) + cx® ¢! cos(z7°).
The first term is bounded since a > 1, and the second is bounded if and only if a > ¢+ 1.

(d) This follows immediately from parts (a) (which works for the cosine as well as the sine function)

and (c).

Page 115, # 14. Solution Let f : (a,b) — R be a differentiable a function. Supposing first that
f! is monotonically increasing, we will show that f is convex. Given numbers z < y in (a,b) and
A€ (0,1), let

z=Xx+ (1= MN)y.

Then the mean value theorem gives us ¢; € (z,2), ¢2 € (z,y) such that

f2) = f@)=fle)z—x),  fly)—f(2)=f(e)ly—2)

Rewriting z in terms of =, y, and A on the right sides of both equations, and using the fact that
f'(e2) = f'(c1) gives
A(f(z) = f(@) < (A= N)(fy) — f(2)),

which, upon solving for f(z), yields

f(2) S Af(2) + (1= A)f(y)

This shows that f is convex.

Now let us begin again supposing that f is convex, and trying to show that f’ is monotonically
increasing. That is, if 2 < y are two points in (a,b), we seek to prove that f'(x) < f'(y). To do
this let ¢ be any point strictly between x and y. Then our ‘slope inequality’ from page 101/# 23
tells us that

F0)~ @) _ F) ~F@) _ f) — 1)
t—x —  y—x - y—t
Letting t — z in the left and middle expressions gives
y—x
Letting ¢ — y in the middle and right expressions gives
fly) — flz
W@ < i,
y—x

Combining the two inequalities gives f'(z) < f/(y), as desired.
Finally, if f” exists on (a,b), we note that f’ is increasing if and only if f”(x) > 0 at every z.
So by our work above, f is convex if and only if f” is non-negative on (a,b). O

Page 116,# 19. Solution: For parts (a) and (b) it is useful to note that

fBr) = flom) _ f(Bn) = f(0) B flan) = f(0)  an

Bn — an Bn—0 Bn — an ap —0 Bn — an



Therefore, if we compare with the derivative of f at zero, we can use the fact that

/ gl Bn ot Qn
110 = FO) 52— = P02
together with the triangle inequality to obtain
fBn) — flan) fBp) = 0) Bn flom) = f(O) o
Bn_an _f<0)‘s‘ ﬂn_o _f(O)‘ Bn_an +’ an_o _f<0)‘ ﬂn_an

Therefore if both {3, /(8n — an)} and {a,/(6n — @)} are bounded, we conclude that
f(Bn) — flan)
Bn — «

n

lim — f’(O)’ = 0.
We now deal with parts (a) and (b) in light of this discussion.

(a) If ay, < 0 < By, then (3, — v, is larger than both |3,| and |, |. Hence,

Bn

Bn — o

Qn

<1
Bn — oy

9

for every n € N. It follows immediately, then, from the discussion above that

lim f(Bn) — flan)

!/
= f'(0).
i S R f(0)
(b) By assumption, there exists C' € R such that |3,/(6, — ay)| < C for all n € N. Thus

Bn

ﬁn_an

an_ﬁn
ﬁn_an

Qn

ﬁn_an

<1+4C

for every n € N. It therefore follows again from the discussion preceding part (a) that

lim f(Bn) — flan)

n—0oo Bn — Qp

= £'(0).

(b) By the mean value theorem, we have for every n € N a number ¢, € (a,,by,) such that

f(ﬁn) — f(an)

/Bn_an

f(en) =

Since ay,, b, — 0, it follows from the Squeeze Theorem that ¢, — 0. And since we are assuming
now that f’ is continuous at 0, we have

tim L0 O i ey = i ) = £(0),

n—oo ﬂn — O[n n—oo n—oo

as advertised. OJ



Page 117,# 22abc. Solution:

(a) Suppose by way of contradiction that x < y are distinct fixed points of f. Then the mean value
theorem gives us ¢ € (x,y) such that
fly) —flx) _y—=

floy=TE—T0 =0 =y

contrary to our assumption that f’ is never equal to 1. Therefore, f has at most one fixed point.
O

(b) Setting f(t) = ¢ for this particular function f gives us that

which is impossible. Therefore, f has no fixed points. On the other hand

t

e
fit)y=1- T
Moreover, since e/ > 0 for every t € R,
0< - < e+l = ! <1
(I+et)2 " (1+et)? 14et
That is, 1 > f'(¢t) > 0 for all t € R. O

(c) Let z; € R be any point and {x,} be the sequence determined by setting x,+1 = f(z,) for
every n € N. Then by the mean value theorem

|Zn1 = xn| = [f(20) = f(n-1)| = [f'()lJ2n — 2n-1]
for some ¢ between z,, and x,_1. In particular,
|Tng1 — 2| < Alzn — 2p1],
where A is the constant given in the problem. Applying this inequality inductively gives
|Tni1 — xn| < A"_1|1:2 — 1.

We will use this to show that {x,} is a Cauchy sequence. Let € > 0 be given and choose N € N
large enough that % < €¢/C, where C := |zg — x1|. Then if m > n > N we have

_A<e.

m— m—1 m—1 00
T — @n| = Z%‘H—%‘) <Y lp—al<C) A <o) A=
j=n j=n j=n j=n
This proves that {z,} is a Cauchy sequence. Since R is complete, we have z € R such that
limx, = z. Since f is continuous, we also have
flx) = f(lim z,) = lim f(z,) = lim x,41 = .
n—oo n—oo n—oo

So z is a fixed point for f. By part (a) there can be no other fixed point for f, so x does not depend
at all on our initial choice of z; O



Alternative Proof (taken shamelessly from Jenista’s hwk): Note that by hypothesis, we

have
|f(xz) — f(0)] < Alz — 0 = Alx|

for every x € R. So suppose, for instance that f(0) > 0 (the case f(0) < 0 is similar, and if
f(0) =0, then 0 itself is the fixed point). Then the above inequality gives us for = > 0 that

flx) = f(0) < Az
(i.e. the graph of f stays below the line y = f(0) + Az which has slop less than 1). Therefore,
fl@) =z < f0)+(A-1)z

for z > 0. In particular, since A — 1 < 0, we have f(b) —b < 0 for b large. But f(z) — x is

continous and f(0) —0 > 0. So by the intermediate value theorem, there exists a € (0, b) such that

f(a) —a=0. We conclude that there exists a fixed point = a (which is unique by part (a)).
Now if x = 2 is some other point and x,,+1 = f(z,), we have

[Tns1 — al = |£(@a) = £(@)] = |F(O)l]zn —a
for some ¢ between z,, and a by the Mean Value Theorem. But this means that
|Tni1 —al < Alzp, —a| < ... < A"|xy — qf
for all n € N. Since lim,, .o, A™ = 0, we conclude that

lim z, = lim z,+1 = a.
n—oo n—oo



