
Solutions to Homework 8

Supplementary problem 1. Let ε > 0 be given. Proving that the conclusion holds is equivalent
to constructing a partition P of [a, b] for which

U(P, f)− L(P, f) < ε.

Let M be an upper bound for |f | on [a, b]. By hypothesis we can find mutually disjoint open
intervals Ij , j = 1, . . . , n covering the set S of discontinuities of f such that

|I1|+ . . . + |In| < ε/2M

Let us write Ij = (aj , bj). By putting the intervals in order (and intersecting them with [a, b], if
necessary) we can suppose that

a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b.

so that Q = {a, a1, b1, . . . , an, bn, b} is a (not very well labeled!) partition of [a, b].
For convenience, let us define b0 = a, an+1 = b. Then the condition S ⊂ I1 ∪ . . . ∪ In means

that f is continuous on the closed intervals [bj , aj+1] for 0 ≤ j ≤ n. Therefore f is integrable on
each of these intervals, and we can choose a partition Pj of [bj , aj+1] such that

U(Pj , f)− L(Pj , f) <
ε

2(n + 1)
.

Now we define our partition P to be the union of the Pj , j = 1, . . . , n (note in particular that
Q ⊂ P , since every point in Q is the endpoint of one the partitions Pj). Then using the upper
bound M for |f | chosen above, we can estimate

U(P, f) ≤ U(P0, f) + M(b1 − a1) + U(P1, f) + M(b2 − a2) + . . . + M(bn − an) + U(Pn, f)
L(P, f) ≥ L(P0, f)−M(b1 − a1) + L(P1, f)−M(b2 − a2) + . . .−M(bn − an) + L(Pn, f).

Therefore

U(P, f)− L(P, f) ≤
n∑

j=0

U(Pj , f)− L(Pj , f) + 2M
n∑

k=1

(bk − ak) < (n + 1)
ε

2n + 1
+ 2M

ε

4M
= ε.

�

Supplementary problem 2. Given ε > 0, we again seek to construct a partition P of [0, 1]
satisfying

U(P, f)− L(P, f) < ε.

This time, however, we let
S = {x ∈ [0, 1] : f(x) ≥ ε/2}.

I claim that there are only finitely many points in S. Indeed any x ∈ S is rational, and can be written
x = p/q where gcd(p, q) = 1 and q ≤ 2/ε (since f(x) = 1/q). So if N ∈ N exceeds 2/ε, then the
denominator q is x can only range from 1 to N . Moreover, for fixed denominator q, the numerator
of x must range between 0 and q. So all told, S contains at most

∑N
q=1(q + 1) = (q + 1)(q + 2)/2

elements.



Clearly then, we can cover S with disjoint open intervals Ij = (aj , bj), j = 1, . . . , n := #S such
that

∑n
j=1 bj − aj < ε/2. Putting the intervals in order and intersecting them with [0, 1] we obtain

a partition P of [0, 1] consisting of the points

a = a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn = b.

Since 0 ≤ f(x) ≤ 1 for all x, we have

0 ≤ L(P, f) ≤ U(p, f) ≤
n∑

j=1

1(bj − aj) +
n−1∑
j=1

ε/2(aj+1 − bj).

The first sum is equal to the sum of the lengths of the intervals Ij and the second is no larger than
ε/2 times the length of the full interval [0, 1]. Hence

U(P, f)− L(P, f) < ε

and we conclude that f is integrable. �

Supplementary problem 3.

Part a. Let P = {n, n + 1, . . . ,m, m + 1} be the partition of [n, m + 1] by integers. Then since f
is decreasing, we have ak = sup{f(x) : x ∈ [k, k + 1]}, and∫ m+1

n
f(x) dx ≤ U(P, f) =

m∑
k=n

ak.

Similarly, using the partition P = {n− 1, n, . . . , m} of [n− 1,m] we obtain∫ m

n−1
f(x) dx ≥ L(P, f) =

m∑
k=n

ak.

Part b. Since the series consists of non-negative terms, it’s enough to show that the partial sums sn

are bounded above uniformly in n. The function f(x) = 1/x(log x)2 is non-negative and decreasing,
and an = f(n) for all n ∈ N, so we can use the previous item to estimate

sn = a2 +
n∑

k=3

ak ≤
∫ n

2

1
x(log x)2

dx = a2 +
1

log 2
− 1

log n
≤ a2 +

1
log 2

for all n ∈ N. Since the right side is independent of n, the series converges.

Part c. The difference between the full series s and a given partial sum sn can be estimated as
follows.

s− sn = lim
m→∞

sm − sn ≤ lim
n→∞

∫ m

n−1
f(x) dx =

1
log(n− 1)

.

So for sn to approximate s to within .01 it is sufficient that 1/ log(n− 1) < .01. That is, we need

n ≥ 1 + e100 ≈ 2.68812× 1043.

Assuming we had a computer capable of evaluating and adding a trillion terms a second, we’d have
to wait about

2.68812× 1031seconds ≈ 3.11125× 1026days ≈ 8.5× 1023years



to find out what the partial sum is. But really, these days, who’s got a mole of years to kill anyhow?

Part d. The first part of this problem also gives us that

s− sn = lim
m→∞

sm − sn ≥ lim
n→∞

∫ m+1

n
f(x) dx =

1
log n

.

So to summarize, we have

sn +
1

log n
≤ s ≤ sn +

1
log(n− 1)

.

This means that if we choose n large enough that

1
log(n− 1)

− 1
log n

< .01

we can compute sn exactly and then replace the sum of the remaining terms by 1/ log n, knowing
that this will be skewing the result by no more than .01. We could determine our n by trial and
error, but with the mean value theorem we can do better. That is, the derivative of the function
1/ log x is −1/x(log x)2 (why is this not a surprise?), so the mean value theorem gives us a number
c between n− 1 and n such that

1
log(n− 1)

− 1
log n

= 1 · 1
c(log c)2

≤ 1
n(log n)2

,

and the latter quantity will certainly be less than .01 when n = 100. In fact, since log 25 > 2, we
can even see that n = 25 will suffice. A little further playing around with a calculator reveals that
15 is the largest value of n for which 1/n(log n)2 < .01. So with the help of mathematica, I now
estimate

2.114 <
1

log 15
+

15∑
k=2

1
k(log k)2

≤
∞∑

k=2

1
k(log k)2

≤ 1
log 14

+
15∑

k=2

1
k(log k)2

< 2.124

Solution to #7 on Page 138. Part a. If f is already integrable on [0, 1], then by definition f

is bounded. Let M ∈ R be an upper bound for |f | on [0, 1]. Then by Theorem 6.12 parts (c) and
(d), we have for c ∈ [0, 1] that∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

c
f(x) dx

∣∣∣∣ =
∣∣∣∣∫ c

0
f(x) dx

∣∣∣∣ ≤ Mc.

So if ε > 0 is given and 0 < c < δ := ε/M , we have∣∣∣∣∫ 1

0
f(x) dx−

∫ 1

c
f(x) dx

∣∣∣∣ < Mδ = ε.

Thus

lim
c→0

∫ 1

c
f(x) dx =

∫ 1

0
f(x) dx.

In other words, the two definitions of integral for f coincide. �



Part b. Consider the function f : [0, 1] → R defined as follows. For each n ∈ Z+ and x ∈
(1/(n + 1), 1/n], we set f(x) = n if n is even and −n if n is odd. Then

lim
c→0

∫ 1

c
|f(x)| dx =

∞∑
n=1

n

(
1
n
− 1

n + 1

)
=
∞∑

n=1

1
n + 1

which diverges, but

lim
c→0

∫ 1

c
f(x) dx =

∞∑
n=1

(−1)nn

(
1
n
− 1

n + 1

)
=
∞∑

n=1

(−1)n

n + 1

which converges.


