
Solutions to Homework 9

Supplementary problem 1. (Leftover differentiation problem) Suppose that f : (a, b) → R is a
convex function that is differentiable at every x ∈ (a, b). Show that f ′ is continuous. (Hint: you
can, of course, use the results of previous homework problems about convexity; moreover, there is
a theorem in the book that makes this problem much easier—for once, it is not the mean value
theorem or the chain rule.)

Solution. Since f is convex, f ′ : (a, b) → R is an increasing function. Suppose for the sake of
obtaining a contradiction that f ′ fails to be continuous at x ∈ (a, b). Then by Theorem 4.29, the
left and right hand limits of f ′ exist at x, and

f ′(x−) = sup
y<x

f(y) ≤ f(x) ≤ inf
z>x

f ′(z) = f ′(x+).

As we are assuming that f ′ is discontinuous at x, one of the inequalities in this display must be
strict—without loss of generality, let us suppose that f ′(x−) < f ′(x).

Therefore, for any y ∈ (a, x) and any t ∈ (f ′(x−), f ′(x)) we have

f ′(y) < t < f ′(x).

But f is differentiable at every point in (a, b), so by Theorem 5.12 there exists s ∈ (y, x) such that
f ′(s) = a. But s < x also implies that f ′(s) < f ′(x−) so that f ′(s) < a, too—a contradiction. We
conclude that f ′ is continuous at x after all. �

Supplementary problem 2 The function 1/t is continuous on (0,∞). Therefore the function

f(x) =
∫ x

1

dt

t
.

is well-defined for all x ∈ (0,∞). Prove each of the following about f .

• f is differentiable at every point and strictly increasing.

Proof. By the fundamental theorem of calculus (6.20), f ′(x) = 1/x for every x ∈ (0,∞), so
f is differentiable at every point. Moreover, for every 0 < x1 < x2, the mean value theorem
gives us c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1) =
x2 − x1

c
> 0.

So f is a strictly increasing function. �

• f(xy) = f(x) + f(y) for every x, y ∈ (0,∞).

Proof. Fix any y ∈ (0,∞) and set g(x) = f(xy) − (f(x) + f(y)). Then by the first part of
this problem and the chain rule, we have

g′(x) = yf ′(xy)− f ′(x) = 1/x− 1/x = 0.



for every x ∈ (0,∞). Moreover, g(1) = f(y)− f(1)− f(y) = 0 since
∫ 1
1 dt/t = 0.

So if x ∈ (0,∞), the mean value theorem gives us c between 1 and x such that

g(x) = g(x)− g(1) = g′(c)(x− 1) = 0.

That is, f(xy)− (f(x) + f(y)) = 0 for all x, y ∈ (0,∞). �

• f(xt) = tf(x) for all t ∈ R, x ∈ (0,∞). Remember the problem from the first chapter in
which xt was defined for any real t—the idea was to do it first for t ∈ Z, then for t ∈ Q, and
then, using supremums, for t ∈ R.

Proof. For t = k ∈ N, we have

f(xk) = f(x · x · . . . x) = f(x) + f(x) + · · ·+ f(x) = kf(x),

by repeated application of the second part of this problem. Now suppose that t = 1/k for
some non-zero k ∈ N. Then (xt)k = x, so by the previous display f(x) = kf(xt). In other
words

f(xt) =
1
k
f(x) = tf(x)

once again. Now if t = p/q is an arbitrary rational number, we have

f(xt) = f(x(p/q)) = pf(x1/q) = p/qf(x) = tf(x),

yet again. Now if t ∈ (0,∞) is irrational, we have (from page 22: 6c) by definition that

f(xt) = f(sup{xs : s ∈ Q, s < t}) = sup{f(xs) : s ∈ Q, s < t}
= sup{sf(x) : s ∈ Q, s < t} = tf(x).

Note that we are allowed to move the supremum past f because f is continuous (so f(xt) =
f(xt+)) and increasing (so f(xt+) = sups<t f(xs)).

Finally, we consider negative values of t. By the second part of this problem we have

0 = f(1) = f(x · x−1) = f(x) + f(x−1)

for any x ∈ (0,∞)—i.e. the statement is true for t = −1. So for arbitrary t < 0, we have

f(xt) = −f(x−t) = −(−t)f(x) = tf(x)

since −t > 0. This concludes the proof. �

• f(0,∞) = R. In particular, there is a unique number d ∈ (1,∞) such that f(d) = 1.

Proof. First note that f(2) =
∫ 2
1 dt/t > 0 since 1/t > 0 for all t ∈ [1, 2]. Therefore, if y ∈ R

is given, we have f(2k) = kf(2) > y > −kf(2) = f(2−k) for k ∈ N large enough. But f is
continuous (because f is differentiable), so the intermediate value theorem gives us a point
x ∈ (2−k, 2k) such that f(x) = y. That is, y belongs to the range of f . As y was arbitrary,
the range of f is all of R.

In particular, we have f(d) = 1 for some d > 1. And d is unique because f is strictly
increasing: f(d′) > 1 for all d′ > d and f(d′) < 1 for all d′ < d.



• f is an invertible function and that f−1(y) = dy for all y ∈ R.

Proof. Since f is strictly increasing, f is injective. Together with the previous part of
this problem, this tells us that f : (0,∞) → R is a bijection and therefore invertible. Let
g : R → (0,∞) be the inverse function. Then

f(g(t)) = t = t · 1 = tf(d) = f(dt)

for all t ∈ R. And since f is injective, this implies that

g(t) = dt

for all t ∈ R. �

Solution to #10abc on Page 138.

Part a. If v = 0, the inequality is trivial, so fix v > 0. Consider the function h : [0,∞) → R given
by

h(t) =
tp

p
− tv +

vq

q
.

We will be done if we can show that h is non-negative. So suppose h(t) < 0 for some t ∈ [0,∞).
Since h(0) = vq/q ≥ 0 and limt→∞ h(t) = ∞, this means that there exists x ∈ R such that h(s) < 0
and h(s) ≤ h(t) for all t ∈ [0,∞). In particular

0 = h′(s) = sp−1 − v,

so s = v1/(p−1) = vq/p (since 1/p + 1/q = 1). Plugging this value of s back into h gives

h(s) =
vq

p
− vq/p+1 +

vq

q
= vq − vq = 0.

So in fact the minimum value of h is no less than 0, and it follows that h(t) ≥ 0 for all t ∈ [0,∞).
That is,

tp

p
+

vq

q
≥ tv

for all t, v ∈ [0,∞).
Finally, note that the above work shows that h(t) is minimal and equal to zero if and only if

t = vq/p—i.e. if and only if tp = vq. �

Part b. For every x ∈ [a, b] we have

f(x)p

p
+

g(x)q

q
≥ f(x)g(x).

by part (a). Theorem 6.12b therefore implies that∫ b

a
f(x)g(x) dx ≤

∫ b

a

f(x)p

p
dx +

∫ b

a

g(x)q

q
dx =

1
p

+
1
q

= 1.



Part c. Let I1 and I2 denote the integrals of |f |p and |g|q, respectively, on [a, b]. Then∫ b

a

(
|f |
I

1/p
1

)p

dx,

∫ b

a

(
|g|
I

1/q
1

)q

dx = 1.

So we can apply part (b): ∫ b

a

|f(x)|
I

1/p
1

|g(x)|
I

1/q
2

dx ≤ 1,

which rearranges to give ∣∣∣∣∫ b

a
f(x)g(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)||g(x)| dx ≤ I

1/p
1 I

1/q
2 .

�

Solution to #1 on page 165.

Let {fn : X → R}n∈N be a uniformly bounded sequence of functions from a metric space X
into R. Then for each n ∈ N, there exists Mn ∈ R such that |fn(x)| ≤ Mn for all x ∈ X. Suppose
further that fn converges uniformly on X. Then choosing ε = 1, there exists N ∈ N such that

|fn(x)− fm(x)| < 1

for all n, m ≥ N , x ∈ X. Taking, in particular, m = N gives us that

|fn(x)| ≤ |fn(x)− fN (x) + fN (x)| ≤ |fn(x)− fN (x)|+ |fN (x)| ≤ 1 + MN

for all x ∈ X, n ≥ N . Therefore, if M = max{M1,M2 . . . , MN−1,MN + 1}, we have

|fn(x)| ≤ M

for all x ∈ X and all n ∈ N. �

Solution to #4 on page 165. The series

∞∑
n=1

1
1 + n2x

diverges when x = 0 because the terms are all 1 and do not converge to 0. For each n ∈ N, the
series has an ill-defined term when x = −1/n2, so the series does not converge for these values of
x either. On the other hand, if I ⊂ R is an interval such that I ∩ {−1/n2}n∈N = ∅ and 0 /∈ I,
then then I claim that the series converges uniformly and absolutely on I—in particular, the series
converges at every non-zero point in R − {1/n2}n∈N. To see this is so, observe that since 0 /∈ I,
there exists r > 0 such that |x| > r for all x ∈ I. Thus∣∣∣∣ 1

1 + n2x

∣∣∣∣ ≤ 1
n2|x| − 1

≤ 1
rn2 − 1

,



for all x ∈ I. Hence, for n ≥ N1 ≥ 1/
√

r − 1/2, we have rn2 − 1 ≥ rn2/2 and∣∣∣∣ 1
1 + n2x

∣∣∣∣ ≤ 2
r

1
n2

.

Let sn(x) denote the nth partial sum of the above series. Let ε > 0. Since
∑∞

n=0
1
n2 is convergent,

there exists N2 ∈ N such that m ≥ n ≥ N2 implies that

m+1∑
k=n

1
n2

<
rε

2
.

So for x ∈ I, we have for m ≥ n ≥ N := max{N1, N2} that

|sn(x)− sm(x)| ≤
m∑

k=n+1

∣∣∣∣ 1
1 + n2x

∣∣∣∣ ≤ 2
r

m+1∑
k=n

1
n2

< ε.

That is, the sequence of partial sums {sn(x)}n∈N is uniformly Cauchy, and therefore uniformly
convergent. This proves my claim. By Theorem 7.12, the series is continous as a function of x on
I. Taking the union of all such intervals I tells us that the series defines a continuous function of
x on R− {0} − {1/n2}n∈N. �


