Solutions to Homework 9

Supplementary problem 1. (Leftover differentiation problem) Suppose that f : (a,b) — R is a
convex function that is differentiable at every x € (a,b). Show that f’ is continuous. (Hint: you
can, of course, use the results of previous homework problems about convexity; moreover, there is
a theorem in the book that makes this problem much easier—for once, it is not the mean value
theorem or the chain rule.)

Solution. Since f is convex, f’ : (a,b) — R is an increasing function. Suppose for the sake of
obtaining a contradiction that f’ fails to be continuous at x € (a,b). Then by Theorem 4.29, the
left and right hand limits of f’ exist at x, and

flle=) =sup f(y) < f(z) < inf f'(2) = f'(a+).

y<x >

As we are assuming that f’ is discontinuous at x, one of the inequalities in this display must be
strict—without loss of generality, let us suppose that f/'(z—) < f/(z).
Therefore, for any y € (a,z) and any t € (f'(z—), f'(x)) we have

fly) <t < fl(z).

But f is differentiable at every point in (a,b), so by Theorem 5.12 there exists s € (y, x) such that
f'(s) = a. But s < x also implies that f'(s) < f/(x—) so that f’(s) < a, too—a contradiction. We
conclude that f’ is continuous at z after all. O

Supplementary problem 2 The function 1/¢ is continuous on (0, 00). Therefore the function
Tdt
f(z) = I

1

is well-defined for all = € (0, 00). Prove each of the following about f.

e f is differentiable at every point and strictly increasing.

Proof. By the fundamental theorem of calculus (6.20), f'(z) = 1/z for every x € (0,00), so
f is differentiable at every point. Moreover, for every 0 < z; < x2, the mean value theorem
gives us ¢ € (z1,x2) such that

T2 — 21

> 0.

flx2) = fz1) = fl(c)(xa — 1) =

c

So f is a strictly increasing function. O

o f(zy) = f(x) + f(y) for every z,y € (0, 00).

Proof. Fix any y € (0,00) and set g(x) = f(xzy) — (f(z) + f(y)). Then by the first part of
this problem and the chain rule, we have

J(x) =yf (zy) — f'(z) =1/z — 1)z = 0.



for every x € (0,00). Moreover, g(1) = f(y) — f(1) — f(y) = 0 since fll dt/t = 0.
So if x € (0,00), the mean value theorem gives us ¢ between 1 and x such that
g9(z) = g(z) — g(1) = g'(c)(z — 1) = 0.

That is, f(xy) — (f(z) + f(y)) =0 for all z,y € (0, 00). O

f(xt) = tf(z) for all t € R,z € (0,00). Remember the problem from the first chapter in
which z! was defined for any real t—the idea was to do it first for ¢t € Z, then for t € Q, and
then, using supremums, for ¢ € R.

Proof. For t = k € N, we have

f@) =fl@ -z x)=fx)+ fx)+- + f(x) = kf(z),

by repeated application of the second part of this problem. Now suppose that ¢ = 1/k for
some non-zero k € N. Then (2)F = x, so by the previous display f(z) = kf(z!). In other
words

flat) = L) = ()

once again. Now if ¢ = p/q is an arbitrary rational number, we have

f(a') = f(a'p/q)) = pf (") = p/af(x) = tf (),
vet again. Now if ¢ € (0, 00) is irrational, we have (from page 22: 6¢) by definition that
f@') = flsup{a®:s € Q,s <t}) =sup{f(z°):5 € Q,s <t}
= sup{sf(z):s € Q,s <t} =tf(x).

Note that we are allowed to move the supremum past f because f is continuous (so f(x!) =
f(z'+)) and increasing (so f(z'+) = sup,, f(z%)).

Finally, we consider negative values of t. By the second part of this problem we have

0=f(1)=flz-2a7") = fz) + fla™")

for any = € (0, 00)—i.e. the statement is true for ¢ = —1. So for arbitrary ¢t < 0, we have
fa') = —f(@™") = —(=t)f(z) = tf(x)
since —t > 0. This concludes the proof. ]

f(0,00) = R. In particular, there is a unique number d € (1, 00) such that f(d) = 1.

Proof. First note that f(2) = ff dt/t > 0 since 1/t > 0 for all t € [1,2]. Therefore, if y € R
is given, we have f(2F) = kf(2) >y > —kf(2) = f(27F) for k € N large enough. But f is
continuous (because f is differentiable), so the intermediate value theorem gives us a point
x € (27F,2F) such that f(x) = y. That is, y belongs to the range of f. As y was arbitrary,
the range of f is all of R.

In particular, we have f(d) = 1 for some d > 1. And d is unique because f is strictly
increasing: f(d') > 1 for all ' > d and f(d') <1 for all d’ < d.



e f is an invertible function and that f~!(y) = d¥ for all y € R..

Proof. Since f is strictly increasing, f is injective. Together with the previous part of
this problem, this tells us that f : (0,00) — R is a bijection and therefore invertible. Let
g : R — (0,00) be the inverse function. Then

flgt)) =t=t-1=tf(d) = f(d')

for all t € R. And since f is injective, this implies that
g(t) =d'

for all t € R. OJ

Solution to #10abc on Page 138.

Part a. If v = 0, the inequality is trivial, so fix v > 0. Consider the function & : [0,00) — R given
by

We will be done if we can show that h is non-negative. So suppose h(t) < 0 for some ¢ € [0,00).
Since h(0) = v?/q > 0 and lim;_,o, h(t) = oo, this means that there exists x € R such that h(s) <0
and h(s) < h(t) for all t € [0,00). In particular

0="H(s)=s""1 -0,

s0 5 = v/ (P=1) = 4/ (since 1/p 4 1/q = 1). Plugging this value of s back into h gives

h(s) = ﬂq_vq/p+1+ﬂq — 09 — 7 =0.
p q

So in fact the minimum value of & is no less than 0, and it follows that A(¢t) > 0 for all ¢ € [0, c0).
That is,

vl

—+—2>1tv

p q
for all t,v € [0, 00).

Finally, note that the above work shows that h(t) is minimal and equal to zero if and only if

t = v?/P—j.e. if and only if t? = v O

Part b. For every x € [a, b] we have

fl@)P glx)
p q

by part (a). Theorem 6.12b therefore implies that

’ " fx) Py 1 1
Af(m)g(a:)dxﬁ/apdx—i-/a . dx_f—i-g_l,




Part c. Let I; and Iy denote the integrals of |f|P and |g|?, respectively, on [a,b]. Then
b P b 4
/ —|if/’ d:c,/ % dr = 1.
a \I;'* a \I;"?

b
/ |f§fp)| lg(la/le dr <1,
o L7 I

So we can apply part (b):

which rearranges to give

b b
/ f(@)g(x) dz| < / @) lg(x)| de < VP19,

Solution to #1 on page 165.

Let {f, : X — R} en be a uniformly bounded sequence of functions from a metric space X
into R. Then for each n € N, there exists M,, € R such that |f,(z)| < M, for all z € X. Suppose
further that f,, converges uniformly on X. Then choosing € = 1, there exists N € N such that

‘fn(w) - fm(x)‘ <1

for all n,m > N, x € X. Taking, in particular, m = N gives us that

[fu(@)| < [fulz) = fn(2) + Iy (@)| < [ful2) = (@) + [fn(2)] < T+ My

for all z € X, n > N. Therefore, if M = max{M;, Ms..., Mn_1, My + 1}, we have

[fu(x)] < M
for all x € X and all n € N. O
Solution to #4 on page 165. The series
>
1+ n2x
n=1

diverges when x = 0 because the terms are all 1 and do not converge to 0. For each n € N, the
series has an ill-defined term when = —1/n?, so the series does not converge for these values of
x either. On the other hand, if I C R is an interval such that I N {—1/n?},en = 0 and 0 ¢ 1,
then then I claim that the series converges uniformly and absolutely on I—in particular, the series
converges at every non-zero point in R — {1/n?},en. To see this is so, observe that since 0 ¢ I,
there exists r > 0 such that |z| > r for all x € I. Thus

1 < 1
“nllz -1 rm2 -1’

1
14+ n2x




for all z € I. Hence, for n > Ny > 1/+/r — 1/2, we have rn? — 1 > rn?/2 and

1 21
14+n2x| ~ rn?’

Let sp(x) denote the nth partial sum of the above series. Let € > 0. Since )7, # is convergent,
there exists No € N such that m > n > Ny implies that

1
Ti 1 <7“e
n? 2"
k=n

So for x € I, we have for m > n > N := max{Ny, N2} that

m 1 27n+1 1
(@) —sm@l S D || ST L <
k=n-+1 k=n

That is, the sequence of partial sums {s,(z)}nen is uniformly Cauchy, and therefore uniformly
convergent. This proves my claim. By Theorem 7.12; the series is continous as a function of x on
I. Taking the union of all such intervals I tells us that the series defines a continuous function of
r on R — {0} — {1/n?},en. O



