
Supplementary problems (assigned 11/24/03)

1. Solve the following initial value problems

(a) y′ = sin t
y , y(π/2) = 1.

(b) (1 + t2)y′ + 4ty = (1 + t2)−2, y(1) = 0.

2. Disillusioned about mathematics, you descend the ivory tower and set yourself the task of
becoming a millionaire by age 50. The plan is simple. You will stash away money continuously
from now til then at a constant rate of R$ per year. You figure that in your new life as day
trader, you can make a reliable 8% annual interest (compounded continuously, of course)
on your savings. Unfortunatly, college has left you broke as well as disillusioned, so you’re
starting from nothing. At what rate R will you need to be saving your money?

3. Remember Newton’s method? The idea is that you have an open set U ⊂ R and a C1

function f : U → R. You know that f(r) = 0 for some point r ∈ U , and you have a decent
initial guess x0 at the location of r. Beginning with this guess, you then produce a sequence
of (hopefully better) approximations of r by setting

xn+1 = N(xn)

for every n ∈ N, where N(x) = x− f(x)/f ′(x). Now assume that r is a non-degenerate root
of f—i.e. that f ′(r) 6= 0. Prove the following.

• r is a fixed point of N .

• There exists δ > 0 such that f(Nδ(r)) ⊂ Nδ(r)

• The (restricted) function N : Nδ(r) → Nδ(r) is a contraction mapping.

(The mean value theorem will be useful in the second and third items.) What can you
conclude from all this about how well Newton’s method works?

4. Suppose that f, g : R2 → R are continuous functions and that f(y, t) > g(y, t) for all points
(y, t) ∈ R2. Let y1, y2 : R → R be functions satisfying

y′1 = f(y1, t), y′2 = g(y2, t)

for all t ∈ R. Show that y1(t0) = y2(t0) for at most one point t0 ∈ R.

5. Let f : R → R be a function. The support of f is the set

K := {x ∈ R : f(x) 6= 0}

Show that if f is real analytic, then K cannot be compact. Show by giving an example that
K can be compact if f is merely C∞.



6. Redo supplementary problem 2 from the homework assigned on 11/3/03:

As a guide, here is the solution to problem 1 from the same assignment:

Proof. Let ε > 0 be given. Proving that the conclusion holds is equivalent to constructing a
partition P of [a, b] for which

U(P, f)− L(P, f) < ε.

Let M be an upper bound for |f | on [a, b]. By hypothesis we can find mutually disjoint open
intervals Ij , j = 1, . . . , n covering the set S of discontinuities of f such that

|I1|+ . . . + |In| < ε/2M

Let us write Ij = (aj , bj). By putting the intervals in order (and intersecting them with [a, b],
if necessary) we can suppose that

a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b.

so that Q = {a, a1, b1, . . . , an, bn, b} is a (not very well labeled!) partition of [a, b].

For convenience, let us define b0 = a, an+1 = b. Then the condition S ⊂ I1 ∪ . . . ∪ In means
that f is continuous on the closed intervals [bj , aj+1] for 0 ≤ j ≤ n. Therefore f is integrable
on each of these intervals, and we can choose a partition Pj of [bj , aj+1] such that

U(Pj , f)− L(Pj , f) <
ε

2(n + 1)
.

Now we define our partition P to be the union of the Pj , j = 1, . . . , n (note in particular
that Q ⊂ P , since every point in Q is the endpoint of one the partitions Pj). Then using the
upper bound M for |f | chosen above, we can estimate

U(P, f) ≤ U(P0, f) + M(b1 − a1) + U(P1, f) + M(b2 − a2) + . . . + M(bn − an) + U(Pn, f)
L(P, f) ≥ L(P0, f)−M(b1 − a1) + L(P1, f)−M(b2 − a2) + . . .−M(bn − an) + L(Pn, f).

Therefore

U(P, f)−L(P, f) ≤
n∑

j=0

U(Pj , f)−L(Pj , f)+2M

n∑
k=1

(bk−ak) < (n+1)
ε

2n + 1
+2M

ε

4M
= ε.
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