

February 12, 1997
Instructor: Bei Hu

Name:

1. (30 points). True or False. (No proof or counter example needed).
(a). Let α be monotonically increasing and continuous on $[a, b]$. Suppose f is bounded and monotone, then f is Riemann-Stieltjes integrable with respect to α over $[a, b]$.
(b). If $\gamma(t)$ is continuously differentiable on $t \in[a, b]$, then γ is rectifiable.
(c). The limit function of a sequence of continuous functions is always continuous.
(d). If $\left\{f_{n}(x)\right\}$ and $\left\{g_{n}(x)\right\}$ converge uniformly on a set E, then their product $\left\{f_{n} g_{n}\right\}$ also converges uniformly on E.
(e). Suppose $f_{n}(x)$ are continuous functions, $f_{n}(x)$ converges to $f(x)$ pointwise on $[a, b]$ and x_{n} converges to $c \in(a, b)$. Then

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(c) .
$$

(f). If $\left\{f_{n}(x)\right\}$ converges to $f(x)$ pointwise on $[a, b]$ and $f_{n} \in \mathcal{R}(\alpha)$, then $f \in \mathcal{R}(\alpha)$.
2. (20 points).
(a). State PRECISELY the definition of a Riemann-Stieltjes integral, using Partition.
(b). State PRECISELY the definition of a Rectifiable curve.
(c). State PRECISELY the M-test for uniform convergence of a series.
(d). State PRECISELY the definition of equi-continuity of a family of functions.
3. (10 points). Suppose that $p>0, q>0$ and

$$
\frac{1}{p}+\frac{1}{q}=1
$$

For $u \geq 0, v \geq 0$, prove that

$$
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q} .
$$

4. (10 points). Let

$$
f_{n}(x)=\frac{x}{1+n^{2} x^{2}} .
$$

It is clear that $f_{n}(x)$ converges to 0 pointwise.
Does $\left\{f_{n}\right\}$ converge uniformly over the interval $[0,1]$? Prove your claim.
5. (10 points). Suppose that $\int_{a}^{a+1} e^{u(x)} d x=1$, and that $u(a)=u(a+1)=0$. Evaluate the integral

$$
\int_{a}^{a+1} x e^{u(x)} u^{\prime}(x) d x
$$

6. (10 points). Let $f(x)=1$ for $0<x \leq 1$, and $f(0)=0$.

Can you find a sequence of continuous functions $f_{n}(x)$ defined on $[0,1]$ such that,
(a) $f_{n}(x)$ converges to $f(x)$ pointwise on $[0,1]$. Prove your answer.
(b) $f_{n}(x)$ converges to $f(x)$ uniformly on $[0,1]$. Prove your answer.
7. (10 points). Suppose that f_{n} and f are continuous functions. f_{n} converges to f pointwise on $[0,1]$. Assume that $f_{n}(x) \leq f_{n+1}(x)(n=1,2,3 \cdots)$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

