Math 366, Test # 1 100

February 12, 1997 Instructor: Bei Hu

Name:_____

1. (30 points). True or False. (No proof or counter example needed).

(a). Let α be monotonically increasing and continuous on [a, b]. Suppose f is bounded and monotone, then f is Riemann-Stieltjes integrable with respect to α over [a, b].

(b). If $\gamma(t)$ is continuously differentiable on $t \in [a, b]$, then γ is rectifiable.

(c). The limit function of a sequence of continuous functions is always continuous.

(d). If $\{f_n(x)\}$ and $\{g_n(x)\}$ converge uniformly on a set E, then their product $\{f_ng_n\}$ also converges uniformly on E.

(e). Suppose $f_n(x)$ are continuous functions, $f_n(x)$ converges to f(x) pointwise on [a, b] and x_n converges to $c \in (a, b)$. Then

$$\lim_{n \to \infty} f_n(x_n) = f(c).$$

(f). If $\{f_n(x)\}$ converges to f(x) pointwise on [a, b] and $f_n \in \mathcal{R}(\alpha)$, then $f \in \mathcal{R}(\alpha)$.

- 2. (20 points).
- (a). State PRECISELY the definition of a Riemann-Stieltjes integral, using Partition.

(b). State PRECISELY the definition of a Rectifiable curve.

(c). State PRECISELY the M-test for uniform convergence of a series.

(d). State PRECISELY the definition of equi-continuity of a family of functions.

3. (10 points). Suppose that p > 0, q > 0 and

$$\frac{1}{p} + \frac{1}{q} = 1.$$

For $u \ge 0, v \ge 0$, prove that

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

4. (10 points). Let

$$f_n(x) = \frac{x}{1+n^2x^2}.$$

It is clear that $f_n(x)$ converges to 0 pointwise.

Does $\{f_n\}$ converge uniformly over the interval [0,1]? Prove your claim.

5. (10 points). Suppose that $\int_{a}^{a+1} e^{u(x)} dx = 1$, and that u(a) = u(a+1) = 0. Evaluate the integral

$$\int_{a}^{a+1} x e^{u(x)} u'(x) dx$$

6. (10 points). Let f(x) = 1 for $0 < x \le 1$, and f(0) = 0.

Can you find a sequence of continuous functions $f_n(x)$ defined on [0,1] such that,

- (a) $f_n(x)$ converges to f(x) pointwise on [0, 1]. Prove your answer.
- (b) $f_n(x)$ converges to f(x) uniformly on [0, 1]. Prove your answer.

7. (10 points). Suppose that f_n and f are continuous functions. f_n converges to f pointwise on [0,1]. Assume that $f_n(x) \leq f_{n+1}(x)$ $(n = 1, 2, 3 \cdots)$. Prove that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx.$$