
METRIC SPACES

In this note we discuss various properties of metric spaces.

§1. Metric Spaces

A metric space is a topological space where the topology is determined by a distance function.

Definition. A metric space (, d) is a nonempty set with a real-valued function d defined on ×
such that for any x, y, z ∈

(a) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x);

(c) d(x, y) ≤ d(x, z) + d(z, y).

The function d is called a metric.

The purpose of introducing metrics is to describe convergence.

Definition. A sequence {xn} in metric space (, d) is convergent to x ∈ if limn→∞ d(xn, x) = 0. A
sequence {xn} is Cauchy if limm,n→∞ d(xn, xm) = 0.

Definition. A metric space (, d) is complete if any Cauchy sequence is convergent.

Remark A metric space is the generalization of the Euclidean space. Let R denote the collection of
all real numbers and set d(x, y) = |x− y| for any x, y ∈ R. Then (R, d) is a complete metric space.

Example Let C[a, b] denote the collection of all continuous functions in [a, b] ⊂ R. Set

d(x, y) = max
a≤t≤b

|x(t)− y(t)| for any x, y ∈ C[a, b].

Then (C[a, b], d) is a metric space. In C[a, b], a sequence {xn} convergent to x is equivalent to the
fact that {xn(t)} is uniformly convergent to x(t) in [a, b]. In fact (C[a, b], d) is complete.

Now we use metric to define a topology. In the following we always assume that (, d) is a metric
space.

Definition. A set O ⊂ is open if for any x ∈ O there exists an r > 0 such that y ∈ O for any y ∈
with d(x, y) < r.

Proposition The set and φ are open; the intersection of any two open sets is open; and the union
of any collection of open sets is open.

Definition. A set F ⊂ is closed if F c is open.
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Proposition A set F ⊂ is closed if and only if for any sequence {xn} ⊂ F which is convergent in
the limit x belongs to F .

Suppose (, d) and (, ρ) are two metric spaces.

Definition. A mapping A :→ is continuous at x0 ∈ if for any ε > 0 there exists a δ > 0 such that
d(x, x0) < δ implies ρ(A(x), A(x0)) < ε.

Proposition A mapping A :→ is continuous at x0 ∈ if and only if for any open set O ⊂ containing
A(x0) the set A−1(O) is open .

§2. Compactness

We always assume that (, d) is a metric space. For any x0 and r > 0 we denote

B(x0; r) = {x ∈; d(x, x0) < r}.

A subset A ⊂ is bounded if A ⊂ B(x0; r) for some x0 and r > 0.

In Rn any bounded infinite set contains a convergent subsequence. This is not true in the general
metric space.

Example In C[0, 1] consider the sequence

xn(t) = { 0 fort ≥ 1
n

1− ntfort ≤ 1
n

for n = 1, 2, · · ·. Obviously {xn} ⊂ B(0; 1) where 0 denotes the identically zero function. However
{xn} has no convergent subsequence in C[0, 1].

Definition. In a metric space (, d), a subset M is compact if any open covering of M has a finite
subcovering.

Theorem In a metric space (, d), a subset M is compact if and only if M is closed and any sequence
in M has a convergent subsequence. Proof ⇒ Suppose M is compact. First we prove that M c

is open. For any x0 ∈ M c we have M ⊂ ∪x∈MB(x; d(x, x0)/2). By compactness there exist
x1, · · · , xn ∈ M such that M ⊂ ∪n

i=1B(xi; d(xi, x0)/2). Take δ = min1≤i≤n d(xi, x0)/2 > 0. Then
M ∩B(x0, δ) = φ. Hence M c is open.

Next we take any sequence {xn} ⊂ M . We prove by contradiction that {xn} has a convergent
subsequence. Suppose the sequence {xn} ⊂ M has no convergent subsequences. We may assume
xn 6= xm for n 6= m. For any n ∈ N the set Sn = {x1, · · · , xn−1, xn+1, · · ·} is closed since it does
not have convergent subsequence. Hence \Sn is open. Note ∪∞n=1(\Sn) = \∩∞n=1 Sn =⊃ M . By the
compactness there exists an N ∈ N such that ∪N

n=1\Sn ⊃ M , i.e., \{xN+1, xN+2, · · ·} ⊃ M . This is
impossible since xN+1 ⊂ M while xN+1 /∈ \{xN+1, xN+2, · · ·}. Contradiction.

⇐ Suppose M is closed and that any sequence in M has a convergent subsequence. We first prove
that for any ε > 0 there exist finitely many points x1, · · · , xk in M for some k = k(ε) such that
M ⊂ ∪k

i=1B(xi; ε).
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If it is not true, then there exists an ε0 > 0 satifying the following property:

for some x1 ∈ M there exists an x2 ∈ M\B(x1; ε0);

for {x1, x2} ⊂ M there exists an x3 ∈ M\B(x1; ε0) ∪B(x2; ε0);

· · · · · ·

for {x1, · · · , xn} ⊂ M there exists an xn+1 ∈ M\ ∪n
i=1 B(xi; ε0);

· · · · · · .

The sequence {xn} ⊂ M satisfies d(xn, xm) ≥ ε0 for n 6= m. It could not have convergent subse-
quence. This is a contradiction.

Take any open covering {Gλ} of M . Suppose it has no finite subcovering. For any n ∈ N there
exist x

(n)
1 , · · · , x(n)

k(n) ∈ M such that M ⊂ ∪k(n)
i=1 B(xi(n); 1/n). Hence for any n ∈ N there exists

a yn ∈ {x(n)
1 , · · · , x(n)

k(n)} ⊂ M such that B(yn; 1/n) cannot be covered by finitely many Gλ. By
assumptions there exists a convergent subsequence {ynk

} with limit y ∈ M . We may assume
y ∈ Gλ0 . Since Gλ0 is open there exists a δ > 0 such that B(y; δ) ⊂ Gλ0 . For such δ we may
take k large such that B(ynk

; 1/nk) ⊂ B(y, δ) ⊂ Gλ0 . This contradicts the assumption that every
B(yn; 1/n) cannot be covered by finitely many Gλ.

§3. Continuous Mappings on Compact Spaces

Next we discuss properties of continuous mappings on compact metric space. We state some results
without proof.

Theorem Suppose A is a continuous mapping of a compact metric space into a metric space . Then
f() is compact.

Corollary Suppose f is a continuous function in a compact metric space . Set

M = sup
x∈

f(x), m = inf
x∈

f(x).

Then there exist points p, q ∈ such that f(p) = M and f(q) = m.

Definition. Suppose A is a mapping: →. A is uniformly continuous in if for any ε > 0 there
exists a δ > 0 such that

ρ(A(x1), A(x2)) < ε if d(x1, x2) < δ, and x1, x2 ∈ .

Theorem Suppose A is a continuous mapping from a compact metric space into a metric space .
Then A is uniformly continuous.
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Next we generalize the notion of continuous functions in bounded closed intervals. Suppose (M,ρ)
is a compact metric space. C(M) denotes the collection of all continuous functions: M → R. Define

d(u, v) = max
x∈M

|u(x)− v(x)| for any u, v ∈ C(M).

Lemma (C(M), d) is a complete metric space. Moreover the convergence in (C(M), d) is equivalent
to the uniform convergence.

Definition. Suppose {fn} is a sequence in C(M).

(a) {fn} is uniformly bounded if for some M > 0 there holds |fn(x)| ≤ M for any x ∈ M and any
integer n;

(b) {fn} is equicontinuous if for any ε > 0 there exists a δ(ε) > 0 such that |fn(x1) − fn(x2)| < ε
for any integer n and x1, x2 ∈ M with ρ(x1, x2) < δ.

Arzela-Ascoli Theorem Suppose {fn} is a sequence in C(M). Then {fn} has a convergent subse-
quence (with respect to the metric d defined above) if and only if {fn} is uniformly bounded and
equicontinuous.

§4. Contraction Mapping Theorem

Suppose (, d) is a metric space and A :→ is a mapping. In lots of cases we need to investigate the
solvability of Ax = x in , i.e., whether A has a fixed point in .

Definition. The mapping A : (, d) → (, d) is a contraction mapping if for some α ∈ (0, 1) there
holds d(Ax,Ay) ≤ αd(x, y) for any x, y ∈.

Remark Contraction mappings are always continuous.

The following theorem is the simplest and most widely used existence result in functional analysis.

Contraction Mapping Theorem Suppose (, d) is a complete metric space and A : (, d) → (, d) is a
contraction mapping. Then A has a unique fixed point on .

Proof For any x0 ∈ set xn+1 = Axn for n = 0, 1, 2, · · ·. We claim that {xn} is a Cauchy sequence.
To see this we calculate

d(xn+1, xn) = d(Axn, Axn−1) ≤ αd(xn, xn−1) ≤ · · · ≤ αnd(x1, x0).

Hence for any n, p ∈ N, there holds

d(xn+p, xn) ≤
p∑

i=1

d(xn+i, xn+i−1) ≤
p∑

i=1

αn+i−1d(x1, x0) ≤
∞∑
i=1

αn+i−1d(x1, x0) =
αn

1− α
d(x1, x0).

Hence {xn} is a Cauchy sequence, and convergent to x∗ in . Taking the limit in Axn = xn+1 we
conclude Ax∗ = x∗ by continuity of A.
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If x∗∗ also satisfies Ax∗∗ = x∗∗, then d(x∗, x∗∗) = d(Ax∗, Ax∗∗) ≤ αd(x∗, x∗∗). This implies x∗ =
x∗∗.

As an application we discuss the initial value problem for the following ordinary differential equation

dx

dt
= f(t, x), x(0) = ξ1

where f is a continuous function in [−a, a] × [ξ − b, ξ + b] for some a, b ∈ (0,∞). We consider its
equivalent integral equation

x(t) = ξ +
∫ t

0
f(s, x(s))ds

and view it as a fixed point problem.

For some h ∈ (0, a], consider

= {x ∈ C[−h, h]; max
−h≤t≤h

|x(t)− ξ| ≤ b}.

is a closed subset in C[−h, h] and hence a complete metric space. Set

Ax(t) = ξ +
∫ t

0
f(s, x(s))ds for any x ∈ .

Obviously Ax ∈ C[−h, h]. First we need to check that Ax ∈ for any x ∈. To do this we have for
|t| ≤ h

|Ax(t)− ξ| = |
∫ t

0
f(s, x(s))ds| ≤

∫ h

0
|f(s, x(s))|ds.

We assume that
M = sup

|t|≤a,|x−ξ|≤b
|f(t, x)|.2

Then
max
|t|≤h

|Ax(t)− ξ| ≤ hM.

Hence Ax ∈ for any x ∈ if we choose h ≤ a such that hM ≤ b. Next for any x, y ∈ we consider

Ax(t)−Ay(t) =
∫ t

0
f(s, x(s))ds−

∫ t

0
f(s, y(s))ds.

We assume for some positive constant L

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|3

for any |t| ≤ a and |x1 − ξ| ≤ b, |x2 − ξ| ≤ b. Then

max
|t|≤h

|Ax(t)−Ay(t)| ≤ h max
|t|≤h

|f(t, x(t))− f(t, y(t))| ≤ hLmax
|t|≤h

|x(t)− y(t)|.

Hence A is a contraction mapping if hL < 1. We may apply the Contraction Mapping Theorem if
we choose

h ≤ a, h ≤ b

M
, h <

1
L

.4

Theorem The initial value problem (1) has a unique solution x(t) in [−h, h] for h in (4) if f ∈
C([−a, a]× [ξ − b, ξ + b]) satisfies (2) and (3).
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