Math 366: Honors Analysis II Quiz 2 February 16, 2001

Name:_____

1. Define:

a) \mathcal{F} is uniformly equicontinuous.

b) f * g

2. State:

a) The Weierstrass Approximation Theorem

b) The Arzela-Ascoli Theorem.

3. Calculate the radius of convergence of the series $\sum_{n=0}^{\infty} (1 + (-1)^n + 1/n)^n x^n.$

Prove two of the following:

4. Suppose f is integrable and has compact support. If g is a polynomial of degree n then f * g is a polynomial of degree $\leq n$.

5. Suppose $f \in C[0,1]$ and $\int_0^1 f(x)x^n dx = 0$ for all $n \in \mathbb{N}$. Then f(x) = 0 for all $x \in [0,1]$. (Hint: Use the Weierstrass Approximation Theorem.)

6. If $f_n \in C^1[a, b]$ and $|f'_n(x)| \leq M$ for all $n \in \mathbb{N}$, then $\{f_n\}$ is equicontinuous.