Math 366: Honors Analysis II Quiz 4 March 30, 2001	Name:
In the following problems, M and N are metric spaces.	
1. Define: a) $A \subset M$ is connected.	
b) $A \subset M$ is arc-wise connected.	
c) $f: M \to N$ is a contractive mapping.	
2. State: a) Contractive Mapping Principle	
b) Minkowski's Inequality	

c) Existence and Uniqueness Theorem for Systems of Differential Equations

Do two of the following:

3. Prove that if $f: M \to N$ is continuous and $A \subset M$ is compact, then $f(A) \subset N$ is compact.

4. Show that any m-th order system of differential equations is equivalent to a first order system.

5. Let M be the complete metric space of continuous functions $x:[0,1/2]\to [0,1]$ with the sup-norm. For $x\in M$ define

$$Tx(t) = \int_0^t 1 + x(s)^2 ds, \quad t \in [0, 1/2]$$

Show that $T:M\to M$ and that T is a contractive mapping. (Bonus: find the fixed point of T.)