1 Basic Concepts

1.1 Limit, Supremum, Infimum

Definition $1 x$ is the limit if x_{n} as $n \rightarrow \infty, \lim _{n \rightarrow \infty} x_{n}=x$, if $\forall 1 / m, \exists N$ such that $n \geq N \Rightarrow$ $\left|x-x_{n}\right|<1 / m$.

Definition 2 If $E \subset$ is bounded above, then there exists a unique real number, $\sup E$, called the supremum of E, such that

1. $\sup E$ is an upper bound of E.
2. If y is any upper bound of E, then $y \geq \sup E$.

Definition 3 If $E \subset$ is bounded below, then there exists a unique real number, $\inf E$, called the infimum of E, such that

1. $\inf E$ is a lower bound of E.
2. If y is any lower bound of E, then $y \leq \sup E$.

Definition $4\left\{y_{n}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ if $\exists m: \rightarrow$ such that $y_{n}=x_{m(n)}, \forall n$.

We sometimes denote a subsequence by $\left\{x_{n^{\prime}}\right\}$ where n^{\prime} stands for $m(n)$.

Definition $5 x$ is a limit point of $\left\{x_{n}\right\}$ if there exists a subsequence $\left\{x_{n^{\prime}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n^{\prime} \rightarrow \infty} x_{n^{\prime}}=x$.

Example: $x_{n}=\left\{\begin{array}{cl}1 & n \text { even } \\ 1 / n & n \text { odd }\end{array}\right.$
0 and 1 are limit points, but neither is the limit of x_{n}.
Note: A convergent sequence has only one limit point.

Definition 6 The limsup of a sequence $\left\{x_{n}\right\}$ is the limit of the sequence $y_{k}=\sup _{n \geq k}\left\{x_{n}\right\}$,

$$
\lim \sup \left\{x_{n}\right\}=\lim _{k \rightarrow \infty} y_{k}=\lim _{k \rightarrow \infty} \sup _{n \geq k}\left\{x_{n}\right\}
$$

Definition 7 The liminf of a sequence $\left\{x_{n}\right\}$ is the limit of the sequence $z_{k}=\inf _{n \geq k}\left\{x_{n}\right\}$,

$$
\liminf \left\{x_{n}\right\}=\lim _{k \rightarrow \infty} z_{k}=\lim _{k \rightarrow \infty} \inf _{n \geq k}\left\{x_{n}\right\}
$$

The sequence y_{k} is decreasing, $y_{k+1} \leq y_{k}$, and the sequence z_{k} is increasing, $z_{k+1} \geq z_{k}$. Therefore, if we allow limits to be $\pm \infty, \lim \sup \left\{x_{n}\right\}$ and $\liminf \left\{x_{n}\right\}$ always exist. Note also that $\lim \sup \left\{x_{n}\right\}$ is the maximum of all limit points, while $\lim \inf \left\{x_{n}\right\}$ is the minimum of all limit points.

Example: As above, $\lim \sup \left\{x_{n}\right\}=1, \lim \inf \left\{x_{n}\right\}=0$.

1.2 Open Sets

Definition $8 A \subset$ is open if $\forall x \in A$, there is an interval $I_{x}=(a, b)$ such that $x \in I_{x} \subset A$.

Example: $A=\bigcup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right)$

Theorem $1 A \subset$ is open $\Longleftrightarrow A$ is a countable disjoint union of intervals.
(\Rightarrow) If A is open there is an interval $I_{x} \subset A$ around each of its points $x \in A$. Thus $A=\bigcup_{x \in A} I_{x}$.
If two intervals $I_{x}=(a, d), I_{y}=(c, d)$ are not disjoint, then either $I_{x} \cup I_{y}=(a, d)$ or $I_{x} \cup I_{y}=(a, b)$ so $I_{x} \cup I_{y}$ can be combined into one interval. Therefore, A is the union of disjoint open intervals.

How many? Each disjoint interval contains a (different) rational number, and is countable, so at most a countable number.

The converse (\Leftarrow) is obvious.

Theorem 2 1. The union of any number of open sets is open.
2. The intersection of a finite number of open sets is open.

1. Let $x \in \bigcup U_{\alpha}$ where each U_{α} is open. Then $x \in U_{\alpha}$ for some α so there is an interval (a, b) in U_{α} containing x. Then $x \in(a, b) \subset \bigcup U_{\alpha}$, proving that the union is open.
2. Let $x \in U_{1} \cap \ldots \cap U_{n}$ where each U_{i} is open. For each i there is an interval $\left(a_{i}, b_{i}\right)$ containing x so $x \in\left(a_{1}, b_{1}\right) \cap \ldots \cap\left(a_{n}, b_{n}\right) \subset U_{1} \cap \ldots \cap U_{n}$. This proves the intersection $U_{1} \cap \ldots \cap U_{n}$ is open since $\left(a_{1}, b_{1}\right) \cap \ldots \cap\left(a_{n}, b_{n}\right)=(a, b)$ where $a=\max \left\{a_{i}\right\}$ and $b=\min \left\{b_{i}\right\}$.

Note: $\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}$, so the assumption of finite is necessary in 2.

1.3 Closed Sets

Definition 9 We say that x is a limit point of a set $A \subset$ if $\exists\left\{x_{n}\right\} \subset A$ such that $x=\lim x_{n}$.

Note that an equivalent condition for x to be a limit point of A is that every open set containing x contains a point of A.

Definition $10 A$ set $A \subset$ is closed if it contains all its limit points.

Examples: $[a, b],(-\infty, \infty)$ (also open!), \emptyset, any finite set.

Theorem $3 A$ is closed $\Longleftrightarrow A^{c}$ is open.
(\Rightarrow) Let $y \in A^{c}$. Then y is not a limit point of A (closed). So there is an open interval I_{y}, $y \in I_{y} \subset A^{c}$ (otherwise every open interval containing y intersects A which implies y is a limit point of $A) . \Rightarrow A^{c}$ is open.
(\Leftarrow) Let x be a limit point of A. If $x \in A^{c}$ then $\exists I_{x}$ such that $x \in I_{x} \subset A^{c}$ (open). Contradiction! Therefore, $x \in A$.

Using the above characterization of open sets, we see that a closed set is the complement of a countable union of disjoint open sets.

Theorem 4 1. The union of a finite number of closed sets is closed.
2. The intersection of any number of closed sets is closed.

These statements follow from Theorems ??, ??, and the following identities:

$$
\left(U_{1} \cup \ldots \cup U_{n}\right)^{c}=U_{1}^{c} \cap \ldots \cap U_{n}^{c} \text { and }\left(\bigcap U_{\alpha}\right)^{c}=\bigcup U_{\alpha}^{c}
$$

Note: $\bigcup_{n=1}^{\infty}\left[-1+\frac{1}{n}, 1-\frac{1}{n}\right]=(-1,1)$, so the assumption of finite is necessary in 1 .
Example (Cantor Set): Remove the middle third, $(1 / 3,2 / 3)$, from $[0,1]$ to get $[0,1 / 3] \cup[2 / 3,1]$. Next remove the middle third from the intervals $[0,1 / 3]$ and $[2 / 3,1]$ to get $[0,1 / 9] \cup[2 / 9,1 / 3] \cup$ $[2 / 3,2 / 9] \cup[4 / 9,1]$. Repeat this process recursively with each closed subinterval. The resulting set C is called the Cantor Set. It contains all of its limit points (in fact, every point is a limit point), but C contains no intervals! It is also uncountable.

An equivalent way to define C is the set of numbers in $[0,1]$ whose ternary expansion contains only 0 's and 2's.

Definition 11 Let $A \subset$. The closure of A, \bar{A}, is the union of A and all the limit points of A.

Note: It is not hard to prove that \bar{A} is the smallest closed set containing A (or, equivalently, that \bar{A} is the intersection of all closed sets containing A). In fact, this statement could be used as the definition of \bar{A}.

Definition $12 A$ subset $B \subset A$ is dense in A, if $A \subset \bar{B}$.

Note: B is dense in A if every point of A is the limit of a sequence of points in B.
Examples: 1) is dense in .
2) (a, b) is dense in $[a, b]$.
3) $(0,1) \backslash\{1 / n \mid n \in\}$ is dense in $(0,1)$.

1.4 Compact Sets

Definition $13 A$ set $A \subset$ is compact if every open cover of A has a finite subcover:

$$
A \subset \bigcup_{x \in C} U_{\alpha} \Rightarrow A \subset U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{N}} \text { for some } \alpha_{1}, \ldots, \alpha_{N} \in C
$$

Here C is an indexing set and the U_{α} are open sets.

Theorem 5 The following are equivalent:

1. A is compact
2. A is closed and bounded
3. Every sequence in A has a limit point in A.
$1 \Rightarrow 2$: Let y be a limit point of A and suppose $y \notin A$. The complements of $[y-1 / n, y-1 / n]$ are open and cover $\backslash\{y\} \supset A$. Since A is compact, a finite subset of them cover A. But the sets are nested, so this means $\exists N$ such that A is contained in the complement of $[y-1 / N, y+1 / N]$. But this implies that y is not a limit point of A, a contradiction. Therefore, $y \in A$, proving that A is closed. To prove that A is bounded, consider the open cover $\{(x-1, x+1) \mid x \in A\}$. Since A is compact, $A \subset\left(x_{1}-1, x_{1}+1\right) \cup \cdots \cup\left(x_{n}-1, x_{n}+1\right)$ for some $x_{1}, \ldots, x_{n} \in A$. So A is bounded above by $\max \left\{x_{i}+1\right\}$ and below by $\min \left\{x_{i}-1\right\}$.
$2 \Rightarrow 3$: Let $\left\{x_{n}\right\} \subset A$. Since A is bounded, $y=\lim \sup \left\{x_{n}\right\}$ exists and is a limit point of $\left\{x_{n}\right\}$ and A. Since A is closed $y \in A$.
$3 \Rightarrow 1$: Let $=\left\{U_{\alpha}\right\}$ be an open cover of $A \subset \bigcup U_{\alpha}$. First we find a countable subset of that still covers A as follows. Let $I_{j}, j=1,2,3, \ldots$, be the countable collection of intervals that have rational endpoints. For $j=1,2,3, \ldots$ choose one $U_{\beta} \in$ that contains I_{j}, if any. Let ${ }^{\prime}=\left\{U_{\beta}\right\} \subset$ be the resulting countable subcollection. To see that ' still covers A, note that $x \in A \Rightarrow x \in U_{\alpha} \in$ for some α. Since U_{α} is open, it contains an interval around x, say $x \in(a, b) \subset U_{\alpha}$. By shrinking this interval, if necessary, we may assume $a, b \in$ and hence $(a, b)=I_{j}$ for some j. Therefore $\exists U_{\beta} \in^{\prime}$ such that $x \in I_{j} \subset U_{\beta}$ and hence ${ }^{\prime}$ covers A.

We now have a countable subcover, say, U_{1}, U_{2}, \ldots. If we take n large enough, then $U_{1}, U_{2}, \ldots, U_{n}$ must already cover A. Suppose not. Then for each $n, \exists x_{n} \in A$ that is not contained in U_{1}, \ldots, U_{n}. By assumption, the sequence $\left\{x_{n}\right\}$ has a limit point $x \in A$. Thus $x \in U_{k}$ for some k. But by construction, U_{k} does not contain x_{k}, x_{k+1}, \ldots contradicting the fact that any neighborhood of a limit point must contain an infinite number of points in the sequence.

Example: Let $a, b \in$. Then $[a, b]$ is closed and bounded, and so is compact. On the other hand, (a, b) is bounded but not closed, so it is not compact. The intervals, $(-\infty, b]$ and $[a, \infty)$ are closed, but not bounded, so they are not compact.

1.5 Cauchy Sequences

It is useful to have a criterion for convergence that does not explicitly involve the limit of the sequence.

Definition $14 A$ sequence $\left\{x_{n}\right\}$ is a Cauchy sequence if $\forall 1 / m, \exists N$ such that $\left|x_{i}-x_{j}\right|<1 / m$ whenever $i, j \geq N$.

Theorem 6 A sequence converges in the usual sense \Longleftrightarrow it is Cauchy.
(\Rightarrow) Assume $x_{n} \rightarrow x$: Given $1 / m, \exists N$ such that if $n \geq N$, then $\left|x_{n}-x\right|<1 /(2 m)$. Then $\left|x_{i}-x_{j}\right| \leq\left|x_{i}-x\right|+\left|x-x_{j}\right|<1 /(2 m)+1 /(2 m)=1 / m$ whenever $i, j \geq N$, so $\left\{x_{n}\right\}$ is Cauchy.
(\Leftarrow) Assume $\left\{x_{n}\right\}$ is Cauchy. Given $1 / m, \exists N$ such that $\left|x_{i}-x_{j}\right|<1 / m$ whenever $i, j \geq N$. Since

$$
\left|x_{i}\right|=\left|x_{i}-x_{N}+x_{N}\right| \leq\left|x_{N}\right|+\left|x_{i}-x_{N}\right|<\left|x_{N}\right|+\frac{1}{m} \quad \forall i \geq N
$$

we see that $\left\{x_{n}\right\}$ is bounded. Therefore, $s=\lim \sup \left\{x_{n}\right\}$ and $t=\liminf \left\{x_{n}\right\}$ are bounded. By definition of \lim sup and $\liminf , \exists i, j \geq N$ such that $s-x_{i}<1 / m$ and $x_{j}-t<1 / m$. But then

$$
0 \leq s-t=\left(s-x_{i}\right)+\left(x_{j}-t\right)+\left(x_{i}-x_{j}\right) \leq \frac{1}{m}+\frac{1}{m}+\frac{1}{m}=\frac{3}{m}
$$

since m is arbitrary, we must have $s=t=\lim x_{n}$.
Example: Let $x_{n}=\log (n)$. Even though $\left|x_{n+1}-x_{n}\right|=\log (1+1 / n) \rightarrow 0$, the sequence is not Cauchy, because $\left|x_{i}-x_{j}\right|$ must be small for all i, j large enough. In this case, $\left|x_{i}-x_{j}\right|=|\log (i / j)|$ can easily approach ∞ for large values of i.

1.6 Continuity

Definition 15 A function f is continuous at x if it is defined in an interval around x and $i f \forall 1 / m$, $\exists 1 / n$ (that may depend on $1 / m$ and x) such that $|f(x)-f(y)|<1 / m$ whenever $|x-y|<1 / n$. We say f is continuous if is continuous at each point in its domain.

By changing the condition $|x-y|<1 / n$ to $0 \leq x-y<1 / n$ in the above definition we get the definition for continuous from the left at x. Similarly, changing $|x-y|<1 / n$ to $0 \leq y-x<1 / n$ we get the definition for continuous from the right at x. We say that f is continuous on a closed interval $[a, b]$ if f is continuous on (a, b), continuous from the right at a, and continuous from the left at b.
f is continuous at x if and only if for all sequences $x_{j} \rightarrow x$ we have $f\left(x_{j}\right) \rightarrow f(x)$.
(\Rightarrow) Given $1 / m, \exists 1 / n$ such that if $|x-y|<1 / n$ then $|f(x)-f(y)|<1 / m$. Also $\exists N$ such that if $j \geq N$ then $\left|x-x_{j}\right|<1 / n$. Putting these together gives $\left|f(x)-f\left(x_{j}\right)\right|<1 / m$ if $j \geq N$.
(\Leftarrow) Suppose f is not continuous at x. Then, $\exists 1 / m$ such that $\forall 1 / n \exists x_{n}$ satisfying $\left|x_{n}-x\right|<1 / n$ and $\left|f\left(x_{n}\right)-f(x)\right| \geq 1 / m$. But $x_{n} \rightarrow x$, so by assumption, $\left|f\left(x_{n}\right)-f(x)\right| \rightarrow 0$, a contradiction. So, f must be continuous at x.

Definition 16 A function f is uniformly continuous if $\forall 1 / m, \exists 1 / n$ (that depends only on $1 / m$) such that $|f(x)-f(y)|<1 / m$ whenever $|x-y|<1 / n$.

Theorem 7 If f is continuous on $[a, b]$, then f is uniformly continuous.

Suppose not. Then $\exists 1 / m$ such that $\forall 1 / n, \exists x_{n}, y_{n}$ satisfying $\left|x_{n}-y_{n}\right|<1 / n$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq$ $1 / m$. Since $[a, b]$ is compact, there exist convergent subsequences $x_{n^{\prime}} \rightarrow x_{0}$ and $y_{n^{\prime}} \rightarrow y_{0}$. But $\left|x_{n^{\prime}}-y_{n^{\prime}}\right|<1 / n^{\prime}$, for an infinite number of $n^{\prime} \rightarrow \infty$, so $x_{0}=y_{0}$. Since f is continuous, $f\left(x_{n^{\prime}}\right) \rightarrow$ $f\left(x_{0}\right)$ and $f\left(y_{n^{\prime}}\right) \rightarrow f\left(y_{0}\right)$, and hence $\left|f\left(x_{n^{\prime}}\right)-f\left(y_{n^{\prime}}\right)\right| \rightarrow 0$, a contradiction!

Theorem $8 f$ is continuous $\Longleftrightarrow f^{-1}(A)$ is open for all open sets A.
(\Rightarrow) Let $x \in f^{-1}(A)$. Since A is open, there is an interval contained in A around the point $f(x) \in A$. Thus, by choosing $1 / m$ small enough, we may assume $(f(x)-1 / m, f(x)+1 / m) \subset A$. By the definition of continuity, $\exists 1 / n$ such that $|f(x)-f(y)|<1 / m$ whenever $|x-y|<1 / n$. In other words, if $y \in(x-1 / n, x+1 / n)$ then $f(y) \in(f(x)-1 / m, f(x)+1 / m) \subset A$. This shows $(x-1 / n, x+1 / n) \subset f^{-1}(A)$ and hence that $f^{-1}(A)$ is open.
(\Leftarrow) Fix x in the domain of f. For any $1 / m$, the set $A=(f(x)-1 / m, f(x)+1 / m)$ is open, so by assumption, $f^{-1}(A)$ is open. Therefore, $f^{-1}(A)$ contains an interval around $x \in f^{-1}(A)$. Hence for $1 / n$ small enough, $(x-1 / n, x+1 / n) \subset f^{-1}(A)$. This shows that if $|x-y|<1 / n$ (i.e.,
$y \in(x-1 / n, x+1 / n)$), then $|f(x)-f(y)|<1 / m$ (i.e., $f(y) \in A$), proving that f is continuous at x.

Theorem 9 If f is continuous and A is compact, then $f(A)$ is compact.

Let $f(A) \subset \bigcup U_{\alpha}$ be an open cover of $f(A)$. Then $\bigcup f^{-1}\left(U_{\alpha}\right)$ is an open cover of A by Theorem ??. Since A is compact, there exists a finite subcover, $A \subset f^{-1}\left(U_{\alpha_{1}}\right) \cup \ldots \cup f^{-1}\left(U_{\alpha_{n}}\right)$. But then $f(A) \subset U_{\alpha_{1}} \cup \ldots \cup U_{\alpha_{n}}$ is a finite subcover of $f(A)$ proving that $f(A)$ is compact.

Theorem 10 (Extreme Value Theorem) If f is continuous on $[a, b]$, then it has a maximum and a minimum on that interval.

By Theorem ??, $f([a, b])$ is compact, and hence closed and bounded by Theorem ??. Therefore, $s=\sup \{f(x) \mid x \in[a, b]\}$ and $t=\inf \{f(x) \mid x \in[a, b]\}$ exist, and are finite limit points of $f([a, b])$. Consequently, there are sequences $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset[a, b]$ such that $f\left(x_{n}\right) \rightarrow s$ and $f\left(y_{n}\right) \rightarrow t$. Since $[a, b]$ is compact, there exists convergent subsequences $x_{n^{\prime}} \rightarrow x_{0}$ and $y_{n^{\prime}} \rightarrow y_{0}$. By Proposition ??, $s=\lim f\left(x_{n}\right)=f\left(x_{0}\right)$ and $t=\lim f\left(y_{n}\right)=f\left(y_{0}\right)$. Therefore, $f\left(x_{0}\right)$ is a maximum of f and $f\left(y_{0}\right)$ is a minimum of f on $[a, b]$.

Theorem 11 (Intermediate Value Theorem) Let f be continuous on $[a, b]$ and suppose y is a number between $f(a)$ and $f(b)$. Then $\exists, x \in[a, b]$ such that $f(x)=y$.

We may assume without loss of generality that $f(a)<f(b)$. We repeatedly bisect the interval $[a, b]$ as follows. Let $c=(a+b) / 2$. If $f(c) \leq y$, let $\left[a_{1}, b_{1}\right]=[c, b]$ and if $f(c)>y$, let $\left[a_{1}, b_{1}\right]=[a, c]$, so that $f\left(a_{1}\right) \leq y<f\left(b_{1}\right)$. Iterating this process we get a sequence of intervals $\left[a_{n}, b_{n}\right]$ satisfying $f\left(a_{n}\right) \leq y<f\left(b_{n}\right)$. Note that the length of these interval is shrinking geometrically:

$$
b_{n}-a_{n}=\left(b_{n-1}-a_{n-1}\right) / 2=\ldots=(b-a) / 2^{n}
$$

It follows that both sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy and converge to a common limit $x \in[a, b]$. Therefore,

$$
f(x)=\lim f\left(a_{n}\right) \leq y \leq \lim f\left(b_{n}\right)=f(x)
$$

and $f(x)=y$ as claimed.
Note: The previous two theorems immediately imply that if f is continuous on $[a, b]$ then $f([a, b])=$ $[c, d]$ where c is the maximum of f and d is the minimum of f.

