
1 Basic Concepts

1.1 Limit, Supremum, Infimum

Definition 1 x is the limit if xn as n → ∞, limn→∞ xn = x, if ∀ 1/m, ∃N such that n ≥ N ⇒
|x− xn| < 1/m.

Definition 2 If E ⊂ is bounded above, then there exists a unique real number, supE, called the
supremum of E, such that

1. supE is an upper bound of E.

2. If y is any upper bound of E, then y ≥ supE.

Definition 3 If E ⊂ is bounded below, then there exists a unique real number, inf E, called the
infimum of E, such that

1. inf E is a lower bound of E.

2. If y is any lower bound of E, then y ≤ supE.

Definition 4 {yn} is a subsequence of {xn} if ∃m :→ such that yn = xm(n), ∀n.

We sometimes denote a subsequence by {xn′} where n′ stands for m(n).

Definition 5 x is a limit point of {xn} if there exists a subsequence {xn′} of {xn} such that
limn′→∞ xn′ = x.

Example: xn =
{

1 n even
1/n n odd

0 and 1 are limit points, but neither is the limit of xn.

Note: A convergent sequence has only one limit point.

Definition 6 The limsup of a sequence {xn} is the limit of the sequence yk = supn≥k{xn},

lim sup{xn} = lim
k→∞

yk = lim
k→∞

sup
n≥k

{xn}
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Definition 7 The liminf of a sequence {xn} is the limit of the sequence zk = infn≥k{xn},

lim inf{xn} = lim
k→∞

zk = lim
k→∞

inf
n≥k

{xn}

The sequence yk is decreasing, yk+1 ≤ yk, and the sequence zk is increasing, zk+1 ≥ zk. Therefore,
if we allow limits to be ±∞, lim sup{xn} and lim inf{xn} always exist. Note also that lim sup{xn}
is the maximum of all limit points, while lim inf{xn} is the minimum of all limit points.

Example: As above, lim sup{xn} = 1, lim inf{xn} = 0.

1.2 Open Sets

Definition 8 A ⊂ is open if ∀x ∈ A, there is an interval Ix = (a, b) such that x ∈ Ix ⊂ A.

Example: A =
⋃∞

n=1 ( 1
n+1 , 1

n)

Theorem 1 A ⊂ is open ⇐⇒ A is a countable disjoint union of intervals.

(⇒) If A is open there is an interval Ix ⊂ A around each of its points x ∈ A. Thus A =
⋃

x∈A Ix.

If two intervals Ix = (a, d), Iy = (c, d) are not disjoint, then either Ix∪ Iy = (a, d) or Ix∪ Iy = (a, b)
so Ix ∪ Iy can be combined into one interval. Therefore, A is the union of disjoint open intervals.

How many? Each disjoint interval contains a (different) rational number, and is countable, so at
most a countable number.

The converse (⇐) is obvious.

Theorem 2 1. The union of any number of open sets is open.

2. The intersection of a finite number of open sets is open.

1. Let x ∈
⋃

Uα where each Uα is open. Then x ∈ Uα for some α so there is an interval (a, b) in
Uα containing x. Then x ∈ (a, b) ⊂

⋃
Uα, proving that the union is open.

2. Let x ∈ U1 ∩ . . . ∩ Un where each Ui is open. For each i there is an interval (ai, bi) containing x
so x ∈ (a1, b1) ∩ . . . ∩ (an, bn) ⊂ U1 ∩ . . . ∩ Un. This proves the intersection U1 ∩ . . . ∩ Un is open
since (a1, b1) ∩ . . . ∩ (an, bn) = (a, b) where a = max{ai} and b = min{bi}.

Note:
⋂∞

n=1 (− 1
n , 1

n) = {0}, so the assumption of finite is necessary in 2.
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1.3 Closed Sets

Definition 9 We say that x is a limit point of a set A ⊂ if ∃ {xn} ⊂ A such that x = lim xn.

Note that an equivalent condition for x to be a limit point of A is that every open set containing
x contains a point of A.

Definition 10 A set A ⊂ is closed if it contains all its limit points.

Examples: [a, b], (−∞,∞) (also open!), ∅, any finite set.

Theorem 3 A is closed ⇐⇒ Ac is open.

(⇒) Let y ∈ Ac. Then y is not a limit point of A (closed). So there is an open interval Iy,
y ∈ Iy ⊂ Ac (otherwise every open interval containing y intersects A which implies y is a limit
point of A). ⇒ Ac is open.

(⇐) Let x be a limit point of A. If x ∈ Ac then ∃ Ix such that x ∈ Ix ⊂ Ac (open). Contradiction!
Therefore, x ∈ A.

Using the above characterization of open sets, we see that a closed set is the complement of a
countable union of disjoint open sets.

Theorem 4 1. The union of a finite number of closed sets is closed.

2. The intersection of any number of closed sets is closed.

These statements follow from Theorems ??, ??, and the following identities:

(U1 ∪ . . . ∪ Un)c = U c
1 ∩ . . . ∩ U c

n and (
⋂

Uα)c =
⋃

U c
α

Note:
⋃∞

n=1 [− 1 + 1
n , 1− 1

n ] = (−1, 1), so the assumption of finite is necessary in 1.

Example (Cantor Set): Remove the middle third, (1/3, 2/3), from [0, 1] to get [0, 1/3] ∪ [2/3, 1].
Next remove the middle third from the intervals [0, 1/3] and [2/3, 1] to get [0, 1/9] ∪ [2/9, 1/3] ∪
[2/3, 2/9]∪ [4/9, 1]. Repeat this process recursively with each closed subinterval. The resulting set
C is called the Cantor Set. It contains all of its limit points (in fact, every point is a limit point),
but C contains no intervals! It is also uncountable.

An equivalent way to define C is the set of numbers in [0, 1] whose ternary expansion contains only
0’s and 2’s.
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Definition 11 Let A ⊂. The closure of A, A, is the union of A and all the limit points of A.

Note: It is not hard to prove that A is the smallest closed set containing A (or, equivalently, that
A is the intersection of all closed sets containing A). In fact, this statement could be used as the
definition of A.

Definition 12 A subset B ⊂ A is dense in A, if A ⊂ B.

Note: B is dense in A if every point of A is the limit of a sequence of points in B.

Examples: 1) is dense in .

2) (a, b) is dense in [a, b].

3) (0, 1) \ {1/n | n ∈} is dense in (0, 1).

1.4 Compact Sets

Definition 13 A set A ⊂ is compact if every open cover of A has a finite subcover:

A ⊂
⋃
x∈C

Uα ⇒ A ⊂ Uα1 ∪ · · · ∪ UαN for some α1, . . . , αN ∈ C

Here C is an indexing set and the Uα are open sets.

Theorem 5 The following are equivalent:

1. A is compact

2. A is closed and bounded

3. Every sequence in A has a limit point in A.

1 ⇒ 2: Let y be a limit point of A and suppose y /∈ A. The complements of [y − 1/n, y − 1/n] are
open and cover \{y} ⊃ A. Since A is compact, a finite subset of them cover A. But the sets are
nested, so this means ∃N such that A is contained in the complement of [y − 1/N, y + 1/N ]. But
this implies that y is not a limit point of A, a contradiction. Therefore, y ∈ A, proving that A is
closed. To prove that A is bounded, consider the open cover {(x − 1, x + 1) | x ∈ A}. Since A is
compact, A ⊂ (x1 − 1, x1 + 1) ∪ · · · ∪ (xn − 1, xn + 1) for some x1, . . . , xn ∈ A. So A is bounded
above by max{xi + 1} and below by min{xi − 1}.

2 ⇒ 3: Let {xn} ⊂ A. Since A is bounded, y = lim sup{xn} exists and is a limit point of {xn} and
A. Since A is closed y ∈ A.
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3 ⇒ 1: Let = {Uα} be an open cover of A ⊂
⋃

Uα. First we find a countable subset of that
still covers A as follows. Let Ij , j = 1, 2, 3, . . ., be the countable collection of intervals that have
rational endpoints. For j = 1, 2, 3, . . . choose one Uβ ∈ that contains Ij , if any. Let ′ = {Uβ} ⊂ be
the resulting countable subcollection. To see that ′ still covers A, note that x ∈ A ⇒ x ∈ Uα ∈ for
some α. Since Uα is open, it contains an interval around x, say x ∈ (a, b) ⊂ Uα. By shrinking this
interval, if necessary, we may assume a, b ∈ and hence (a, b) = Ij for some j. Therefore ∃Uβ ∈′
such that x ∈ Ij ⊂ Uβ and hence ′ covers A.

We now have a countable subcover, say, U1, U2, . . .. If we take n large enough, then U1, U2, . . . , Un

must already cover A. Suppose not. Then for each n, ∃xn ∈ A that is not contained in U1, . . . , Un.
By assumption, the sequence {xn} has a limit point x ∈ A. Thus x ∈ Uk for some k. But by
construction, Uk does not contain xk, xk+1, . . . contradicting the fact that any neighborhood of a
limit point must contain an infinite number of points in the sequence.

Example: Let a, b ∈. Then [a, b] is closed and bounded, and so is compact. On the other hand,
(a, b) is bounded but not closed, so it is not compact. The intervals, (−∞, b] and [a,∞) are closed,
but not bounded, so they are not compact.

1.5 Cauchy Sequences

It is useful to have a criterion for convergence that does not explicitly involve the limit of the
sequence.

Definition 14 A sequence {xn} is a Cauchy sequence if ∀ 1/m, ∃N such that |xi − xj | < 1/m
whenever i, j ≥ N .

Theorem 6 A sequence converges in the usual sense ⇐⇒ it is Cauchy.

(⇒) Assume xn → x: Given 1/m, ∃N such that if n ≥ N , then |xn − x| < 1/(2m). Then
|xi − xj | ≤ |xi − x|+ |x− xj | < 1/(2m) + 1/(2m) = 1/m whenever i, j ≥ N , so {xn} is Cauchy.

(⇐) Assume {xn} is Cauchy. Given 1/m, ∃N such that |xi − xj | < 1/m whenever i, j ≥ N . Since

|xi| = |xi − xN + xN | ≤ |xN |+ |xi − xN | < |xN |+
1
m

∀ i ≥ N

we see that {xn} is bounded. Therefore, s = lim sup{xn} and t = lim inf{xn} are bounded. By
definition of lim sup and lim inf, ∃ i, j ≥ N such that s− xi < 1/m and xj − t < 1/m. But then

0 ≤ s− t = (s− xi) + (xj − t) + (xi − xj) ≤
1
m

+
1
m

+
1
m

=
3
m

since m is arbitrary, we must have s = t = lim xn.

Example: Let xn = log(n). Even though |xn+1 − xn| = log(1 + 1/n) → 0, the sequence is not
Cauchy, because |xi−xj | must be small for all i, j large enough. In this case, |xi−xj | = | log(i/j)|
can easily approach ∞ for large values of i.

5



1.6 Continuity

Definition 15 A function f is continuous at x if it is defined in an interval around x and if ∀ 1/m,
∃ 1/n (that may depend on 1/m and x) such that |f(x)− f(y)| < 1/m whenever |x− y| < 1/n. We
say f is continuous if is continuous at each point in its domain.

By changing the condition |x − y| < 1/n to 0 ≤ x − y < 1/n in the above definition we get the
definition for continuous from the left at x. Similarly, changing |x − y| < 1/n to 0 ≤ y − x < 1/n
we get the definition for continuous from the right at x. We say that f is continuous on a closed
interval [a, b] if f is continuous on (a, b), continuous from the right at a, and continuous from the
left at b.

f is continuous at x if and only if for all sequences xj → x we have f(xj) → f(x).

(⇒) Given 1/m, ∃ 1/n such that if |x− y| < 1/n then |f(x)− f(y)| < 1/m. Also ∃N such that if
j ≥ N then |x− xj | < 1/n. Putting these together gives |f(x)− f(xj)| < 1/m if j ≥ N .

(⇐) Suppose f is not continuous at x. Then, ∃ 1/m such that ∀ 1/n ∃xn satisfying |xn − x| < 1/n
and |f(xn) − f(x)| ≥ 1/m. But xn → x, so by assumption, |f(xn) − f(x)| → 0, a contradiction.
So, f must be continuous at x.

Definition 16 A function f is uniformly continuous if ∀ 1/m, ∃ 1/n (that depends only on 1/m)
such that |f(x)− f(y)| < 1/m whenever |x− y| < 1/n.

Theorem 7 If f is continuous on [a, b], then f is uniformly continuous.

Suppose not. Then ∃ 1/m such that ∀ 1/n, ∃xn, yn satisfying |xn−yn| < 1/n but |f(xn)−f(yn)| ≥
1/m. Since [a, b] is compact, there exist convergent subsequences xn′ → x0 and yn′ → y0. But
|xn′ − yn′ | < 1/n′, for an infinite number of n′ → ∞, so x0 = y0. Since f is continuous, f(xn′) →
f(x0) and f(yn′) → f(y0), and hence |f(xn′)− f(yn′)| → 0, a contradiction!

Theorem 8 f is continuous ⇐⇒ f−1(A) is open for all open sets A.

(⇒) Let x ∈ f−1(A). Since A is open, there is an interval contained in A around the point
f(x) ∈ A. Thus, by choosing 1/m small enough, we may assume (f(x) − 1/m, f(x) + 1/m) ⊂ A.
By the definition of continuity, ∃ 1/n such that |f(x) − f(y)| < 1/m whenever |x − y| < 1/n. In
other words, if y ∈ (x − 1/n, x + 1/n) then f(y) ∈ (f(x) − 1/m, f(x) + 1/m) ⊂ A. This shows
(x− 1/n, x + 1/n) ⊂ f−1(A) and hence that f−1(A) is open.

(⇐) Fix x in the domain of f . For any 1/m, the set A = (f(x) − 1/m, f(x) + 1/m) is open,
so by assumption, f−1(A) is open. Therefore, f−1(A) contains an interval around x ∈ f−1(A).
Hence for 1/n small enough, (x − 1/n, x + 1/n) ⊂ f−1(A). This shows that if |x − y| < 1/n (i.e.,
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y ∈ (x − 1/n, x + 1/n)), then |f(x) − f(y)| < 1/m (i.e., f(y) ∈ A), proving that f is continuous
at x.

Theorem 9 If f is continuous and A is compact, then f(A) is compact.

Let f(A) ⊂
⋃

Uα be an open cover of f(A). Then
⋃

f−1(Uα) is an open cover of A by Theorem ??.
Since A is compact, there exists a finite subcover, A ⊂ f−1(Uα1) ∪ . . . ∪ f−1(Uαn). But then
f(A) ⊂ Uα1 ∪ . . . ∪ Uαn is a finite subcover of f(A) proving that f(A) is compact.

Theorem 10 (Extreme Value Theorem) If f is continuous on [a, b], then it has a maximum
and a minimum on that interval.

By Theorem ??, f([a, b]) is compact, and hence closed and bounded by Theorem ??. Therefore,
s = sup{f(x) | x ∈ [a, b]} and t = inf{f(x) | x ∈ [a, b]} exist, and are finite limit points of f([a, b]).
Consequently, there are sequences {xn}, {yn} ⊂ [a, b] such that f(xn) → s and f(yn) → t. Since
[a, b] is compact, there exists convergent subsequences xn′ → x0 and yn′ → y0. By Proposition ??,
s = lim f(xn) = f(x0) and t = lim f(yn) = f(y0). Therefore, f(x0) is a maximum of f and f(y0)
is a minimum of f on [a, b].

Theorem 11 (Intermediate Value Theorem) Let f be continuous on [a, b] and suppose y is a
number between f(a) and f(b). Then ∃, x ∈ [a, b] such that f(x) = y.

We may assume without loss of generality that f(a) < f(b). We repeatedly bisect the interval [a, b]
as follows. Let c = (a + b)/2. If f(c) ≤ y, let [a1, b1] = [c, b] and if f(c) > y, let [a1, b1] = [a, c],
so that f(a1) ≤ y < f(b1). Iterating this process we get a sequence of intervals [an, bn] satisfying
f(an) ≤ y < f(bn). Note that the length of these interval is shrinking geometrically:

bn − an = (bn−1 − an−1)/2 = . . . = (b− a)/2n

It follows that both sequences {an} and {bn} are Cauchy and converge to a common limit x ∈ [a, b].
Therefore,

f(x) = lim f(an) ≤ y ≤ lim f(bn) = f(x)

and f(x) = y as claimed.

Note: The previous two theorems immediately imply that if f is continuous on [a, b] then f([a, b]) =
[c, d] where c is the maximum of f and d is the minimum of f .
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