1 Basic Concepts

1.1 Limit, Supremum, Infimum

Definition 1 z is the limit if x,, as n — oo, lim, ooz, = x, if V1/m, AN such that n > N =
|z — x,| < 1/m.

Definition 2 If E C is bounded above, then there exists a unique real number, sup E, called the
supremum of E, such that

1. sup E s an upper bound of E.

2. If y is any upper bound of E, then y > sup F.

Definition 3 If E C is bounded below, then there exists a unique real number, inf E, called the
infimum of F, such that

1. inf F is a lower bound of E.

2. If y is any lower bound of E, then y < sup E.
Definition 4 {y,} is a subsequence of {z,} if 3m :— such that y, = Ty, (), V1.
We sometimes denote a subsequence by {x,/} where n’ stands for m(n).

Definition 5 x is a limit point of {x,} if there exists a subsequence {x,} of {xzn} such that
limnlﬂoo Ip = X.

1 n even

Example: x,, = { 1/n nodd
0 and 1 are limit points, but neither is the limit of z,,.

Note: A convergent sequence has only one limit point.

Definition 6 The limsup of a sequence {x,} is the limit of the sequence yj = sup,>x{7n},

lim sup{z,} = klirlélo Yk = khjgo Sgg{xn}
n>



Definition 7 The liminf of a sequence {xy} is the limit of the sequence zj, = inf,>p{x,},

liminf{z,} = klim 2z = klim 11;%{:%}

The sequence yy, is decreasing, yr+1 < yi, and the sequence z is increasing, zx4+1 > 2. Therefore,
if we allow limits to be +oo, limsup{z,} and liminf{z,} always exist. Note also that lim sup{z, }
is the mazimum of all limit points, while liminf{x,,} is the minimum of all limit points.

Ezample: As above, limsup{z,} = 1, liminf{z,} = 0.

1.2 Open Sets

Definition 8 A C is open if Va € A, there is an interval I, = (a,b) such that x € I, C A.

Example: A=J,2, (%H’ +)

n
Theorem 1 A C is open <= A is a countable disjoint union of intervals.

(=) If Ais open there is an interval I, C A around each of its points € A. Thus A = (J,c 4 Lo

If two intervals I, = (a,d), I, = (c,d) are not disjoint, then either I, UI, = (a,d) or I, UI, = (a,b)
so I, U I, can be combined into one interval. Therefore, A is the union of disjoint open intervals.

How many? Each disjoint interval contains a (different) rational number, and is countable, so at
most a countable number.

The converse (<) is obvious.

Theorem 2 1. The union of any number of open sets is open.

2. The intersection of a finite number of open sets is open.

1. Let x € |JU, where each U, is open. Then = € U, for some « so there is an interval (a,b) in
U, containing x. Then x € (a,b) C |JU,, proving that the union is open.

2. Let x € Uy N...N U, where each U; is open. For each i there is an interval (a;, b;) containing z
so x € (a1,b1)N...N(ap,b,) C Uy N...NU,. This proves the intersection U; N...N U, is open
since (a1,b1) N...N (an,by,) = (a,b) where a = max{a;} and b = min{b;}.

Note: (o2, (— 2, 1) = {0}, so the assumption of finite is necessary in 2.



1.3 Closed Sets

Definition 9 We say that x is a limit point of a set A C if I{x,} C A such that x = lim x,,.

Note that an equivalent condition for = to be a limit point of A is that every open set containing
x contains a point of A.

Definition 10 A set A C is closed if it contains all its limit points.
Ezamples: [a,b], (—o0,00) (also open!), (), any finite set.
Theorem 3 A is closed < A€ is open.

(=) Let y € A°. Then y is not a limit point of A (closed). So there is an open interval I,
y € I, C A° (otherwise every open interval containing y intersects A which implies y is a limit
point of A). = A€ is open.

(<) Let x be a limit point of A. If z € A° then 31, such that x € I, C A° (open). Contradiction!
Therefore, z € A.

Using the above characterization of open sets, we see that a closed set is the complement of a
countable union of disjoint open sets.

Theorem 4 1. The union of a finite number of closed sets is closed.

2. The intersection of any number of closed sets is closed.

These statements follow from Theorems 77, 7?7, and the following identities:

(hU...uU,)=UfNn...NnU; and(ﬂUa)CZUUg

Note: g2 [—1+ 1,1 —1]=(—1,1), so the assumption of finite is necessary in 1.
Ezample (Cantor Set): Remove the middle third, (1/3,2/3), from [0, 1] to get [0,1/3] U [2/3,1].
Next remove the middle third from the intervals [0,1/3] and [2/3,1] to get [0,1/9] U [2/9,1/3] U
[2/3,2/9]U[4/9,1]. Repeat this process recursively with each closed subinterval. The resulting set
C' is called the Cantor Set. It contains all of its limit points (in fact, every point is a limit point),
but C' contains no intervals! It is also uncountable.

An equivalent way to define C'is the set of numbers in [0, 1] whose ternary expansion contains only
0’s and 2’s.



Definition 11 Let A C. The closure of A, A, is the union of A and all the limit points of A.

Note: It is not hard to prove that A is the smallest closed set containing A (or, equivalently, that
A is the intersection of all closed sets containing A). In fact, this statement could be used as the
definition of A.

Definition 12 A subset B C A is dense in A, if A C B.

Note: B is dense in A if every point of A is the limit of a sequence of points in B.
Ezamples: 1) is dense in .
2) (a,b) is dense in [a, b].

3) (0,1)\ {1/n | n €} is dense in (0, 1).

1.4 Compact Sets

Definition 13 A set A C is compact if every open cover of A has a finite subcover:
AC U Uy =>ACUy U---UUyy for some ay,...,an € C
zeC

Here C' is an indexing set and the U, are open sets.

Theorem 5 The following are equivalent:

1. A is compact
2. A is closed and bounded

3. Fvery sequence in A has a limit point in A.

1 = 2: Let y be a limit point of A and suppose y ¢ A. The complements of [y — 1/n,y — 1/n] are
open and cover \{y} D A. Since A is compact, a finite subset of them cover A. But the sets are
nested, so this means 3N such that A is contained in the complement of [y — 1/N,y + 1/N]. But
this implies that ¥y is not a limit point of A, a contradiction. Therefore, y € A, proving that A is
closed. To prove that A is bounded, consider the open cover {(x — 1,2+ 1) | z € A}. Since A is
compact, A C (x1 — 1,21 +1)U---U (2, — 1,2, + 1) for some z1,...,2, € A. So A is bounded
above by max{z; + 1} and below by min{z; — 1}.

2 = 3: Let {z,} C A. Since A is bounded, y = limsup{z,} exists and is a limit point of {z,} and
A. Since A is closed y € A.



3 = 1: Let = {U,} be an open cover of A C |JU,. First we find a countable subset of that
still covers A as follows. Let I;, j = 1,2,3,..., be the countable collection of intervals that have
rational endpoints. For j = 1,2,3,... choose one U € that contains I;, if any. Let ' = {Ug} C be
the resulting countable subcollection. To see that ’ still covers A, note that v € A = z € U, € for
some «a. Since U, is open, it contains an interval around z, say = € (a,b) C U,. By shrinking this
interval, if necessary, we may assume a,b € and hence (a,b) = I; for some j. Therefore 3Us €’
such that « € I; C U and hence " covers A.

We now have a countable subcover, say, Uy, Us, .. .. If we take n large enough, then Uy,Us, ..., U,
must already cover A. Suppose not. Then for each n, 3z, € A that is not contained in Uy, ..., U,.
By assumption, the sequence {z,} has a limit point z € A. Thus x € Uy for some k. But by
construction, Uy does not contain xj,zp41,... contradicting the fact that any neighborhood of a
limit point must contain an infinite number of points in the sequence.

Ezample: Let a,b €. Then [a,b] is closed and bounded, and so is compact. On the other hand,
(a,b) is bounded but not closed, so it is not compact. The intervals, (—oo, b] and [a, 00) are closed,
but not bounded, so they are not compact.

1.5 Cauchy Sequences

It is useful to have a criterion for convergence that does not explicitly involve the limit of the
sequence.

Definition 14 A sequence {z,} is a Cauchy sequence if V1/m, AN such that |z; — zj| < 1/m
whenever 1,7 > N.

Theorem 6 A sequence converges in the usual sense <= it is Cauchy.

(=) Assume z, — x: Given 1/m, 3N such that if n > N, then |z, — x| < 1/(2m). Then
|z; — 25 < |y — x| + |z — x| < 1/(2m) 4+ 1/(2m) = 1/m whenever i,j > N, so {xy} is Cauchy.

(<) Assume {z,} is Cauchy. Given 1/m, 3N such that |z; — ;| < 1/m whenever 7,5 > N. Since

1 .
|zi| = |vi —xn +zn| < |zn| + |z —2n| < |zn|+ p— Vi>N

we see that {x,} is bounded. Therefore, s = limsup{x,} and ¢ = liminf{x,} are bounded. By
definition of limsup and liminf, 34, j > N such that s — 2; < 1/m and z; —t < 1/m. But then

1 1 3
OSS—t:(s—:vi)+(:vj—t)+(1:i—:nj)§E—|———|— —

1
m m m
since m is arbitrary, we must have s =t = lim z,,.

Ezample: Let x, = log(n). Even though |z,+1 — z,| = log(1 + 1/n) — 0, the sequence is not
Cauchy, because |z; — ;| must be small for all i, j large enough. In this case, |z; —z;| = |log(i/j)]|
can easily approach oo for large values of 7.



1.6 Continuity

Definition 15 A function f is continuous at z if it is defined in an interval around x and if V1/m,
31/n (that may depend on 1/m and x) such that |f(z) — f(y)| < 1/m whenever |z —y| < 1/n. We
say f is continuous if is continuous at each point in its domain.

By changing the condition |z — y| < 1/n to 0 < 2 —y < 1/n in the above definition we get the
definition for continuous from the left at x. Similarly, changing [z —y| < 1/nto 0 <y —x < 1/n
we get the definition for continuous from the right at x. We say that f is continuous on a closed
interval [a,b] if f is continuous on (a,b), continuous from the right at a, and continuous from the
left at b.

f is continuous at z if and only if for all sequences x; — = we have f(z;) — f(x).

(=) Given 1/m, 31/n such that if |x — y| < 1/n then |f(z) — f(y)| < 1/m. Also 3N such that if
j > N then |z — z;| < 1/n. Putting these together gives |f(z) — f(z;)| <1/mif j > N.

(<) Suppose f is not continuous at x. Then, 31/m such that V1/n 3z, satisfying |z, — x| < 1/n
and |f(zy) — f(z)| > 1/m. But x,, — z, so by assumption, |f(z,) — f(z)] — 0, a contradiction.
So, f must be continuous at .

Definition 16 A function f is uniformly continuous if V1/m, 31/n (that depends only on 1/m)
such that |f(x) — f(y)| < 1/m whenever |z —y| < 1/n.

Theorem 7 If f is continuous on |a,b], then f is uniformly continuous.

Suppose not. Then 31/m such that V1/n, 3x,, y, satisfying |z, —y,| < 1/n but |f(x,) — f(yn)| >
1/m. Since [a,b] is compact, there exist convergent subsequences x,, — xo and y,y — yo. But
|y — yn| < 1/n, for an infinite number of n’ — oo, so xg = yp. Since f is continuous, f(z,) —
f(zo) and f(yn) — f(yo), and hence |f(x,) — f(yn)| — 0, a contradiction!

Theorem 8 f is continuous <= f~1(A) is open for all open sets A.

(=) Let * € f71(A). Since A is open, there is an interval contained in A around the point
f(z) € A. Thus, by choosing 1/m small enough, we may assume (f(z) — 1/m, f(z) +1/m) C A.
By the definition of continuity, 31/n such that |f(x) — f(y)| < 1/m whenever |z —y| < 1/n. In
other words, if y € (x — 1/n,z + 1/n) then f(y) € (f(z) — 1/m, f(x) + 1/m) C A. This shows
(r —1/n,z+1/n) C f~1(A) and hence that f~1(A) is open.

(<) Fix x in the domain of f. For any 1/m, the set A = (f(x) — 1/m, f(x) + 1/m) is open,
so by assumption, f~1(A) is open. Therefore, f~1(A) contains an interval around = € f~1(A).
Hence for 1/n small enough, (x — 1/n,2 + 1/n) C f~1(A). This shows that if |z —y| < 1/n (i.e.,



y € (x —1/n,z +1/n)), then |f(z) — f(y)| < 1/m (ie., f(y) € A), proving that f is continuous
at x.

Theorem 9 If f is continuous and A is compact, then f(A) is compact.

Let f(A) C |JU, be an open cover of f(A). Then | f~1(U,) is an open cover of A by Theorem ?7?.
Since A is compact, there exists a finite subcover, A C f~'(Us,) U... U f~1(U,,). But then
f(A) Cc Uy, U...UU,, is a finite subcover of f(A) proving that f(A) is compact.

Theorem 10 (Extreme Value Theorem) If f is continuous on [a,b], then it has a maximum
and a minimum on that interval.

By Theorem ??, f([a,b]) is compact, and hence closed and bounded by Theorem ??. Therefore,
s=sup{f(z) | x € [a,b]} and t = inf{f(x) | € [a,b]} exist, and are finite limit points of f([a,b]).
Consequently, there are sequences {xy},{yn} C [a,b] such that f(z,) — s and f(y,) — t. Since
[a, b] is compact, there exists convergent subsequences x,; — ¢ and y,,» — yo. By Proposition 77,
s =lm f(z,) = f(xo) and t = lim f(y,) = f(yo). Therefore, f(xo) is a maximum of f and f(yo)
is a minimum of f on [a, b].

Theorem 11 (Intermediate Value Theorem) Let f be continuous on [a,b] and suppose y is a
number between f(a) and f(b). Then 3,x € [a,b] such that f(z) =y.

We may assume without loss of generality that f(a) < f(b). We repeatedly bisect the interval [a, ]
as follows. Let ¢ = (a+b)/2. If f(c) <y, let [a1,b1] = [¢,b] and if f(c) > y, let [a1,b1] = [a, ],
so that f(a1) <y < f(b1). Iterating this process we get a sequence of intervals [ay,, b,] satisfying
flap) <y < f(by). Note that the length of these interval is shrinking geometrically:

bn—an = (bn—l —an_l)/2: cee = (b—a)/2"

It follows that both sequences {a,} and {b,} are Cauchy and converge to a common limit = € [a, b].
Therefore,

f(l’) = hmf(an) <y< hmf(bn) = f(.%')
and f(x) =y as claimed.

Note: The previous two theorems immediately imply that if f is continuous on [a, b] then f([a,b]) =
[c, d] where ¢ is the maximum of f and d is the minimum of f.



