
1 Uniform Convergence

1.1 Limits of Continuous Functions

In this section we consider a sequence of functions, f1(x), f2(x), . . . , that we assume share a
common domain D. In order to understand the function obtained as the limit of this sequence,
f(x) = limn→∞ fn(x) it would be useful to have criteria that help us decide such questions as

1. Is f continuous/integrable/differentiable if the fn are?

2. Does limn→∞
∫ b
a fn(x)dx =

∫ b
a f(x)dx?

3. Does f ′n(x) → f ′(x)?

The concept of of uniform convergence plays a central role in such questions.

Definition 1 A sequence of functions fn converges (pointwise) to f , fn → f , if, for each x ∈ D,
and ∀ 1/m, ∃N (that may depend on x and 1/m) such that |fn(x)− f(x)| < 1/m, ∀n ≥ N

Example: Let

fn(x) =


0 0 ≤ x < 1− 1

n
n
2 (x− 1) + 1

2 1− 1
n ≤ x < 1 + 1

n
1 1 + 1

n ≤ x ≤ 2

If 0 ≤ x < 1/2, then ∃N such that 1− 1/N < x, so fn(x) = 0, ∀n ≥ N ; if 1/2 < x ≤ 1, then ∃N
such that 1+1/N < x, so fn(x) = 1, ∀n ≥ N ; finally, if x = 1/2, then fn(x) = 1/2, ∀n. Therefore,
fn → f where

f(x) =


0 0 ≤ x < 1

2
1
2 x = 1
1 1

2 < x ≤ 2

Note that the limit function f is discontinuous, even though the functions fn are continuous. A
stronger version of convergence is needed to preserve continuity in the limit.

Definition 2 A sequence of functions fn converges uniformly to f , fn → f , if ∀ 1/m, ∃N (that
may depend only on 1/m) such that |fn(x)− f(x)| < 1/m, ∀n ≥ N and ∀x ∈ D.

Example: fn(x) = 1 + x + . . . + xn converges uniformly to f(x) = 1
1−x on [−r, r] for any fixed

0 < r < 1, not not on (−1, 1).

fn(x) = (1 − xn+1)/(1 − x) = f(x) − xn+1/(1 − x). If |x| ≤ r < 1, then 1/|1 − x| ≤ 1/(1 − r),
so |fn(x) − f(x)| ≤ |x|n+1/(1 − r) ≤ rn+1/(1 − r). Now, given 1/m, choose N such that rN+1 <
(1− r)/m. Then, ∀ |x| ≤ r and ∀n ≥ N ,

|fn(x)− f(x)| ≤ rn+1/(1− r) ≤ rN+1/(1− r) < 1/m
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To show the convergence is not uniform on (−1, 1), we must show that ∃ 1/m such that ∀N ,
|fn(x)−f(x)| ≥ 1/m for some x ∈ (−1, 1) and some n ≥ N . Since |fn(x)−f(x)| = |x|n+1/|1−x| →
∞ as x → 1, this is easy to arrange.

Theorem 1 Assume fn are continuous and fn → f uniformly on D. Then f is continuous on D.

Given 1/m, choose N such that |fn(x)− f(x)| < 1/(3m), ∀x ∈ D and ∀n ≥ N . Then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

<
1

3m
+ |fn(x)− fn(y)|+ 1

3m
∀x, y ∈ D

Now fix x ∈ D. Since fn is continuous at x, ∃ 1/k such that if |x− y| < 1/k then |fn(x)− fn(y)| <
1/(3m). Note that 1/k may depend on x. Then

|f(x)− f(y)| < 1
3m

+
1

3m
+

1
3m

=
1
m

whenever |x− y| < 1/k proving that f is continuous at x.

Note: The above proof also shows that if fn are uniformly continuous and fn → f uniformly,
then f is uniformly continuous. The condition |x − y| < 1/k in the proof can be removed and all
inequalities hold ∀x, y ∈ D.

A useful modification of the definition of uniform convergence is uniform convergence on compact
subsets. For example, fn(x) = 1 + x + . . . + xn converges uniformly on compact subsets of (−1, 1)
as the previous example shows (any [a, b] ⊂ (−1, 1) is contained in [−r, r] for some r < 1).

1.2 Limits of Integrals

The next theorem shows that we can interchange integration and uniform limits.

Theorem 2 Assume fn are integrable and fn → f uniformly on [a, b]. Then f is integrable and
limn→∞

∫ b
a fn(x)dx =

∫ b
a f(x)dx.

Recall

I(f) = inf
{∫ b

a
s(x)dx

∣∣∣ s(x) ≥ f(x), s = step function
}

I(f) = sup
{∫ b

a
t(x)dx

∣∣∣ t(x) ≤ f(x), t = step function
}
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Given 1/m, find N such that |fn(x)− f(x)| < 1/[3m(b− a)], ∀x ∈ [a, b] and ∀n ≥ N .

⇒ fn(x)− 1
3m(b−a) < f(x) < fn(x) + 1

3m(b−a)

⇒ I(fn)− 1
3m ≤ I(f) ≤ I(fn) + 1

3m

and similarly for I(f) (by the linearity of I and I). Therefore,

|I(f)− I(fn)| ≤ 1
3m

|I(f)− I(fn)| ≤ 1
3m

Since I(fn) = I(fn),

|I(f)− I(f)| = |I(f)− I(fn) + I(fn)− I(f)|
≤ |I(f)− I(fn)|+ |I(fn)− I(f)|

≤ 1
3m

+
1

3m
=

2
3m

<
1
m

Since 1/m is arbitrary, I(f) = I(f) = I(f) so f is integrable and I(f) =
∫ b
a f(x)dx. We have

already shown |I(f)− I(fn)| ≤ 1/(3m), ∀n ≥ N , and this proves I(fn) → I(f).

Example: Index the rational numbers in [0, 1] by r1, r2, r3, . . . and define

fn(x) =
{

1 if x = r1, r2, . . . , rn

0 otherwise

then fn(x) → f(x) where

f(x) =
{

1 if x ∈ [0, 1]∩
0 otherwise

Note that
∫ 1
0 fn(x)dx = 0 and limn→∞

∫ 1
0 fn(x)dx = 0, but f(x) is not integrable!

1.3 Limits of Derivatives

The corresponding theorem for derivatives is false.

Example: Let fn(x) =
√

x2 + 1/n2. Note that the functions fn(x) are differentiable and converge
uniformly on [−1, 1] to f(x) =

√
x2 = |x|.

To see that the convergence is uniform, note that the maximum difference between fn and f occurs
at x = 0,

max
x∈[0,1]

|fn(x)− f(x)| =
√

02 + 1/n2 − |0| = 1
n

However, f(x) is not differentiable at 0. To preserve differentiability in the limit we need to assume
the uniform convergence of f ′n.

3



Theorem 3 Assume fn and f ′n are continuous on [a, b] (i.e., fn ∈ C1[a, b]). If fn → f pointwise
and f ′n → g uniformly, then f and g are continuous on [a, b] and f ′ = g. (i.e., f ∈ C1[a, b]).

Fix x0 ∈ [a, b]. Then by the Fundamental Theorem of Calculus, fn(x) = f(x0) +
∫ x
x0

f ′n(t)dt. By
Theorem ??, as n →∞, we get f(x) = f(x0) +

∫ x
x0

g(t)dt. Therefore f ′(x) = g(x).

4


