1 Uniform Convergence

1.1 Limits of Continuous Functions

In this section we consider a sequence of functions, $f_1(x)$, $f_2(x)$, ..., that we assume share a common domain D. In order to understand the function obtained as the limit of this sequence, $f(x) = \lim_{n \to \infty} f_n(x)$ it would be useful to have criteria that help us decide such questions as

- 1. Is f continuous/integrable/differentiable if the f_n are?
- 2. Does $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$?
- 3. Does $f'_n(x) \to f'(x)$?

The concept of of *uniform convergence* plays a central role in such questions.

Definition 1 A sequence of functions f_n converges (pointwise) to f, $f_n \to f$, if, for each $x \in D$, and $\forall 1/m$, $\exists N$ (that may depend on x and 1/m) such that $|f_n(x) - f(x)| < 1/m$, $\forall n \ge N$

Example: Let

$$f_n(x) = \begin{cases} 0 & 0 \le x < 1 - \frac{1}{n} \\ \frac{n}{2}(x-1) + \frac{1}{2} & 1 - \frac{1}{n} \le x < 1 + \frac{1}{n} \\ 1 & 1 + \frac{1}{n} \le x \le 2 \end{cases}$$

If $0 \le x < 1/2$, then $\exists N$ such that 1 - 1/N < x, so $f_n(x) = 0$, $\forall n \ge N$; if $1/2 < x \le 1$, then $\exists N$ such that 1 + 1/N < x, so $f_n(x) = 1$, $\forall n \ge N$; finally, if x = 1/2, then $f_n(x) = 1/2$, $\forall n$. Therefore, $f_n \to f$ where

$$f(x) = \begin{cases} 0 & 0 \le x < \frac{1}{2} \\ \frac{1}{2} & x = 1 \\ 1 & \frac{1}{2} < x \le 2 \end{cases}$$

Note that the limit function f is discontinuous, even though the functions f_n are continuous. A stronger version of convergence is needed to preserve continuity in the limit.

Definition 2 A sequence of functions f_n converges uniformly to f, $f_n \to f$, if $\forall 1/m$, $\exists N$ (that may depend only on 1/m) such that $|f_n(x) - f(x)| < 1/m$, $\forall n \ge N$ and $\forall x \in D$.

Example: $f_n(x) = 1 + x + \ldots + x^n$ converges uniformly to $f(x) = \frac{1}{1-x}$ on [-r,r] for any fixed 0 < r < 1, not not on (-1,1).

 $f_n(x) = (1 - x^{n+1})/(1 - x) = f(x) - x^{n+1}/(1 - x)$. If $|x| \le r < 1$, then $1/|1 - x| \le 1/(1 - r)$, so $|f_n(x) - f(x)| \le |x|^{n+1}/(1 - r) \le r^{n+1}/(1 - r)$. Now, given 1/m, choose N such that $r^{N+1} < (1 - r)/m$. Then, $\forall |x| \le r$ and $\forall n \ge N$,

$$|f_n(x) - f(x)| \le r^{n+1}/(1-r) \le r^{N+1}/(1-r) < 1/m$$

To show the convergence is *not* uniform on (-1,1), we must show that $\exists 1/m$ such that $\forall N$, $|f_n(x) - f(x)| \ge 1/m$ for some $x \in (-1,1)$ and some $n \ge N$. Since $|f_n(x) - f(x)| = |x|^{n+1}/|1-x| \to \infty$ as $x \to 1$, this is easy to arrange.

Theorem 1 Assume f_n are continuous and $f_n \to f$ uniformly on D. Then f is continuous on D.

Given 1/m, choose N such that $|f_n(x) - f(x)| < 1/(3m), \forall x \in D$ and $\forall n \ge N$. Then

$$\begin{aligned} |f(x) - f(y)| &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \\ &< \frac{1}{3m} + |f_n(x) - f_n(y)| + \frac{1}{3m} \quad \forall x, y \in D \end{aligned}$$

Now fix $x \in D$. Since f_n is continuous at $x, \exists 1/k$ such that if |x - y| < 1/k then $|f_n(x) - f_n(y)| < 1/(3m)$. Note that 1/k may depend on x. Then

$$|f(x) - f(y)| < \frac{1}{3m} + \frac{1}{3m} + \frac{1}{3m} = \frac{1}{m}$$

whenever |x - y| < 1/k proving that f is continuous at x.

Note: The above proof also shows that if f_n are uniformly continuous and $f_n \to f$ uniformly, then f is uniformly continuous. The condition |x - y| < 1/k in the proof can be removed and all inequalities hold $\forall x, y \in D$.

A useful modification of the definition of uniform convergence is uniform convergence on compact subsets. For example, $f_n(x) = 1 + x + \ldots + x^n$ converges uniformly on compact subsets of (-1, 1)as the previous example shows (any $[a, b] \subset (-1, 1)$ is contained in [-r, r] for some r < 1).

1.2 Limits of Integrals

The next theorem shows that we can interchange integration and *uniform* limits.

Theorem 2 Assume f_n are integrable and $f_n \to f$ uniformly on [a, b]. Then f is integrable and $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Recall

$$\overline{I}(f) = \inf \left\{ \int_{a}^{b} s(x) dx \mid s(x) \ge f(x), s = \text{step function} \right\}$$

$$\underline{I}(f) = \sup \left\{ \int_{a}^{b} t(x) dx \mid t(x) \le f(x), t = \text{step function} \right\}$$

Given 1/m, find N such that $|f_n(x) - f(x)| < 1/[3m(b-a)], \forall x \in [a, b] \text{ and } \forall n \ge N.$

$$\Rightarrow f_n(x) - \frac{1}{3m(b-a)} < f(x) < f_n(x) + \frac{1}{3m(b-a)}$$

$$\Rightarrow \underline{I}(f_n) - \frac{1}{3m} \leq \underline{I}(f) \leq \underline{I}(f_n) + \frac{1}{3m}$$

and similarly for $\overline{I}(f)$ (by the linearity of \underline{I} and \overline{I}). Therefore,

$$\begin{aligned} |\underline{I}(f) - \underline{I}(f_n)| &\leq \frac{1}{3m} \\ |\overline{I}(f) - \overline{I}(f_n)| &\leq \frac{1}{3m} \end{aligned}$$

Since $\overline{I}(f_n) = \underline{I}(f_n)$,

$$\begin{aligned} |\overline{I}(f) - \underline{I}(f)| &= |\overline{I}(f) - \overline{I}(f_n) + \underline{I}(f_n) - \underline{I}(f)| \\ &\leq |\overline{I}(f) - \overline{I}(f_n)| + |\underline{I}(f_n) - \underline{I}(f)| \\ &\leq \frac{1}{3m} + \frac{1}{3m} = \frac{2}{3m} < \frac{1}{m} \end{aligned}$$

Since 1/m is arbitrary, $\overline{I}(f) = \underline{I}(f) = I(f)$ so f is integrable and $I(f) = \int_a^b f(x) dx$. We have already shown $|I(f) - I(f_n)| \le 1/(3m)$, $\forall n \ge N$, and this proves $I(f_n) \to I(f)$.

Example: Index the rational numbers in [0,1] by r_1, r_2, r_3, \ldots and define

$$f_n(x) = \begin{cases} 1 & \text{if } x = r_1, r_2, \dots, r_n \\ 0 & \text{otherwise} \end{cases}$$

then $f_n(x) \to f(x)$ where

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \\ 0 & \text{otherwise} \end{cases}$$

Note that $\int_0^1 f_n(x) dx = 0$ and $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$, but f(x) is not integrable!

1.3 Limits of Derivatives

The corresponding theorem for derivatives is *false*.

Example: Let $f_n(x) = \sqrt{x^2 + 1/n^2}$. Note that the functions $f_n(x)$ are differentiable and converge uniformly on [-1, 1] to $f(x) = \sqrt{x^2} = |x|$.

To see that the convergence is uniform, note that the maximum difference between f_n and f occurs at x = 0,

$$\max_{x \in [0,1]} |f_n(x) - f(x)| = \sqrt{0^2 + 1/n^2} - |0| = \frac{1}{n}$$

However, f(x) is not differentiable at 0. To preserve differentiability in the limit we need to assume the uniform convergence of f'_n .

Theorem 3 Assume f_n and f'_n are continuous on [a, b] (i.e., $f_n \in C^1[a, b]$). If $f_n \to f$ pointwise and $f'_n \to g$ uniformly, then f and g are continuous on [a, b] and f' = g. (i.e., $f \in C^1[a, b]$).

Fix $x_0 \in [a, b]$. Then by the Fundamental Theorem of Calculus, $f_n(x) = f(x_0) + \int_{x_0}^x f'_n(t)dt$. By Theorem ??, as $n \to \infty$, we get $f(x) = f(x_0) + \int_{x_0}^x g(t)dt$. Therefore f'(x) = g(x).